Answer :

To solve the given system of equations:

[tex]\[ -7x - 6y = 4 \][/tex]

[tex]\[ x = -3y + 8 \][/tex]

we can follow these steps:

1. Substitute the expression for [tex]\( x \)[/tex] from the second equation into the first equation. This gives us:

[tex]\[ -7(-3y + 8) - 6y = 4 \][/tex]

2. Distribute and combine like terms:

[tex]\[ 21y - 56 - 6y = 4 \][/tex]

3. Combine like terms:

[tex]\[ 15y - 56 = 4 \][/tex]

4. Add 56 to both sides to isolate the term with [tex]\( y \)[/tex]:

[tex]\[ 15y = 60 \][/tex]

5. Divide both sides by 15 to solve for [tex]\( y \)[/tex]:

[tex]\[ y = 4 \][/tex]

6. Substitute the value of [tex]\( y \)[/tex] back into the second equation to solve for [tex]\( x \)[/tex]:

[tex]\[ x = -3(4) + 8 \][/tex]

7. Simplify:

[tex]\[ x = -12 + 8 \][/tex]

[tex]\[ x = -4 \][/tex]

Therefore, the solution to the system of equations is:

[tex]\[ x = -4 \][/tex]

[tex]\[ y = 4 \][/tex]