Answer :

To solve the given expression [tex]\(5(x-6+3x)^2-6\)[/tex] for [tex]\(x = 2\)[/tex], follow these steps:

1. Substitute [tex]\(x = 2\)[/tex] into the expression:
[tex]\[ 5(2 - 6 + 3 \cdot 2)^2 - 6 \][/tex]

2. Simplify inside the parentheses:
[tex]\[ 2 - 6 + 3 \cdot 2 \][/tex]

3. Calculate [tex]\(3 \cdot 2\)[/tex]:
[tex]\[ 3 \cdot 2 = 6 \][/tex]

4. Continue simplifying inside the parentheses:
[tex]\[ 2 - 6 + 6 \][/tex]
[tex]\[ 2 - 6 + 6 = 2 \][/tex]

5. Now we have:
[tex]\[ 5(2)^2 - 6 \][/tex]

6. Calculate [tex]\((2)^2\)[/tex]:
[tex]\[ (2)^2 = 4 \][/tex]

7. Multiply by 5:
[tex]\[ 5 \cdot 4 = 20 \][/tex]

8. Subtract 6:
[tex]\[ 20 - 6 = 14 \][/tex]

Therefore, the value of the expression [tex]\(5(x-6+3x)^2-6\)[/tex] when [tex]\(x = 2\)[/tex] is [tex]\(14\)[/tex].

The correct answer is (b) [tex]\(14\)[/tex].