Which expressions listed on the left are equivalent to [tex]\sqrt{\frac{36 a^8}{225 a^2}}[/tex]? Check all that apply. (Assume that [tex]a \neq 0[/tex].)

A.
B.
C.
D.
E.



Answer :

To determine which expressions are equivalent to [tex]\(\sqrt{\frac{36 a^8}{225 a^2}}\)[/tex], let's simplify this expression step-by-step:

1. Simplify the fraction inside the square root:
The original expression is [tex]\(\sqrt{\frac{36 a^8}{225 a^2}}\)[/tex].

2. Factor the numerical coefficients:
Notice that both 36 and 225 are perfect squares. Specifically, [tex]\(36 = 6^2\)[/tex] and [tex]\(225 = 15^2\)[/tex]. Thus, we can rewrite the fraction as:
[tex]\[ \frac{36 a^8}{225 a^2} = \frac{6^2 a^8}{15^2 a^2} \][/tex]

3. Separate the numerical part from the variable part inside the fraction:
Rewrite the fraction as:
[tex]\[ \frac{6^2}{15^2} \cdot \frac{a^8}{a^2} \][/tex]

4. Simplify the coefficients:
Since [tex]\(\frac{6^2}{15^2} = \left(\frac{6}{15}\right)^2 = \left(\frac{2}{5}\right)^2\)[/tex], we have:
[tex]\[ \left( \frac{2}{5} \right)^2 \][/tex]

5. Simplify the variables using the properties of exponents:
For the variables, [tex]\(\frac{a^8}{a^2} = a^{8-2} = a^6\)[/tex].

6. Combine the simplified parts:
Now we can recombine the parts as:
[tex]\[ \frac{6^2 a^8}{225 a^2} = \left( \frac{2 a^6}{5} \right)^2 \][/tex]

7. Apply the square root:
Finally, we take the square root of [tex]\(\left( \frac{2 a^6}{5} \right)^2\)[/tex] which results in:
[tex]\[ \sqrt{\left( \frac{2 a^6}{5} \right)^2} = \frac{2 a^6}{5} \][/tex]

Thus, [tex]\(\sqrt{\frac{36 a^8}{225 a^2}} = \frac{2 a^6}{5}\)[/tex]. Therefore the equivalent expression is:
[tex]\[ 2 \cdot \frac{\sqrt{a^6}}{5} \][/tex]

Which can be written as [tex]\(2 \cdot \frac{a^3}{5}\)[/tex], since [tex]\(\sqrt{a^6} = a^3\)[/tex].

Given this simplified expression, the expressions listed might include various forms equivalent to [tex]\(\frac{2 a^6}{5}\)[/tex] or [tex]\(2 \cdot \frac{a^3}{5}\)[/tex].

Identify which of the answer choices A, B, C, D, E match this simplified expression and select those.