Which expression is equivalent to [tex]\frac{1}{2} x + (-7) - 2 \frac{1}{4} x - (-2)?[/tex]

A. [tex]-1 \frac{3}{4} x - 5[/tex]
B. [tex]1 \frac{3}{4} x - 9[/tex]
C. [tex]3 \frac{3}{4} x - 9[/tex]
D. [tex]3 \frac{3}{4} x - 7[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\frac{1}{2} x + (-7) - 2 \frac{1}{4} x - (-2)\)[/tex], we need to follow a series of simplification steps. Here's a detailed, step-by-step solution:

1. Rewrite Mixed Fractions as Improper Fractions:
- The term [tex]\(2 \frac{1}{4} x\)[/tex] can be rewritten as [tex]\(\frac{9}{4} x\)[/tex], since [tex]\(2 \frac{1}{4} = \frac{8}{4} + \frac{1}{4} = \frac{9}{4}\)[/tex].

2. Rewrite the Expression:
- Substituting the improper fraction back into the expression, we get:
[tex]\[ \frac{1}{2} x + (-7) - \frac{9}{4} x - (-2) \][/tex]

3. Simplify Negative Signs:
- Distribute the negative signs:
[tex]\[ \frac{1}{2} x - 7 - \frac{9}{4} x + 2 \][/tex]

4. Combine Like Terms:
- First, combine the [tex]\(x\)[/tex] terms. To do this, we need a common denominator:
[tex]\[ \frac{1}{2} x = \frac{2}{4} x \quad \text{so the x terms are} \quad \frac{2}{4} x - \frac{9}{4} x = \frac{2 - 9}{4} x = -\frac{7}{4} x \][/tex]
- Next, combine the constant terms:
[tex]\[ -7 + 2 = -5 \][/tex]

5. Construct the Final Expression:
- Combining the simplified [tex]\(x\)[/tex] term and the constant term, we get:
[tex]\[ -\frac{7}{4} x - 5 \][/tex]
- Converting [tex]\(-\frac{7}{4}\)[/tex] to a mixed fraction yields [tex]\(-1 \frac{3}{4}\)[/tex].

Therefore, the expression equivalent to [tex]\(\frac{1}{2} x + (-7) - 2 \frac{1}{4} x - (-2)\)[/tex] is:
[tex]\[ -\frac{7}{4} x - 5 \quad \text{or} \quad -1 \frac{3}{4} x - 5 \][/tex]

Thus, the correct choice is:
(A) [tex]\(-1 \frac{3}{4} x - 5\)[/tex]