Graph the function [tex]\( y = -2(x+2)^2 - 1 \)[/tex] using the given table of values and following the instructions below.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-10 & -129 \\
\hline
-9 & -99 \\
\hline
-8 & -73 \\
\hline
-7 & -51 \\
\hline
-6 & -33 \\
\hline
-5 & -19 \\
\hline
-4 & -9 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-3 & -3 \\
\hline
-2 & -1 \\
\hline
-1 & -3 \\
\hline
0 & -9 \\
\hline
1 & -19 \\
\hline
2 & -33 \\
\hline
3 & -51 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
4 & -73 \\
\hline
5 & -99 \\
\hline
6 & -129 \\
\hline
7 & -163 \\
\hline
8 & -201 \\
\hline
9 & -243 \\
\hline
10 & -289 \\
\hline
\end{tabular}

Plot at least five points from the table of values on the axes below. Click a point to delete it.



Answer :

To graph the function [tex]\( y = -2(x+2)^2 - 1 \)[/tex] using the given table of values, we will select and plot at least five points from the table. The chosen points are as follows:

1. [tex]\((-10, -129)\)[/tex]
2. [tex]\((-8, -73)\)[/tex]
3. [tex]\((-4, -9)\)[/tex]
4. [tex]\((0, -9)\)[/tex]
5. [tex]\((4, -73)\)[/tex]

Now, let's proceed with plotting these points:

1. Point (-10, -129):
- This point is located 10 units to the left of the y-axis and 129 units down from the x-axis.

2. Point (-8, -73):
- This point is located 8 units to the left of the y-axis and 73 units down from the x-axis.

3. Point (-4, -9):
- This point is located 4 units to the left of the y-axis and 9 units down from the x-axis.

4. Point (0, -9):
- This point is located on the y-axis at 9 units down from the x-axis.

5. Point (4, -73):
- This point is located 4 units to the right of the y-axis and 73 units down from the x-axis.

By plotting these points on the graph, we get a visual representation of the function [tex]\( y = -2(x+2)^2 - 1 \)[/tex]. The resulting plot should illustrate that the function is a downward-opening parabola with a vertex at [tex]\((-2, -1)\)[/tex].

The process entails carefully placing each point based on the given coordinates and then joining the points to visualize the curve.

#### Let's summarize the coordinates to visualize them more clearly:
- Point 1: [tex]\((-10, -129)\)[/tex]
- Point 2: [tex]\((-8, -73)\)[/tex]
- Point 3: [tex]\((-4, -9)\)[/tex]
- Point 4: [tex]\((0, -9)\)[/tex]
- Point 5: [tex]\((4, -73)\)[/tex]

When these points are graphed, the resulting parabola reflects the nature of the quadratic function, specifically how it opens downwards due to the negative coefficient in front of the [tex]\((x+2)^2\)[/tex] term.