Answer :

To simplify the given expression [tex]\(\left(17x^2 + 7x - 14\right) - \left(-6x^2 - 5x - 18\right)\)[/tex], follow these steps:

1. Distribute the negative sign through the second polynomial:

This means changing the sign of each term inside the parentheses of the second polynomial:

[tex]\[ \left(17x^2 + 7x - 14\right) - \left(-6x^2 - 5x - 18\right) \implies \left(17x^2 + 7x - 14\right) + \left(6x^2 + 5x + 18\right) \][/tex]

2. Combine like terms:

- Combine the [tex]\(x^2\)[/tex] terms:
[tex]\[ 17x^2 + 6x^2 = 23x^2 \][/tex]
- Combine the [tex]\(x\)[/tex] terms:
[tex]\[ 7x + 5x = 12x \][/tex]
- Combine the constant terms:
[tex]\[ -14 + 18 = 4 \][/tex]

3. Write the simplified expression:

By combining the like terms, we get:
[tex]\[ 23x^2 + 12x + 4 \][/tex]

Thus, the simplified form of the given expression is [tex]\(\boxed{23x^2 + 12x + 4}\)[/tex].