Answer :
To simplify the expression [tex]\((2z - 5) + (z - 4)\)[/tex], we will follow these steps:
1. Distribute and combine like terms:
- Identify like terms in the expression: [tex]\(2z\)[/tex] and [tex]\(z\)[/tex] are like terms, both containing the variable [tex]\(z\)[/tex].
- Combine the coefficients of the like terms. For the [tex]\(z\)[/tex] terms: [tex]\(2z + z\)[/tex].
- Combine the constants: [tex]\(-5\)[/tex] and [tex]\(-4\)[/tex].
2. Simplify the expression:
- Combine the [tex]\(z\)[/tex] terms: [tex]\(2z + z = 3z\)[/tex].
- Combine the constants: [tex]\(-5 - 4 = -9\)[/tex].
3. Write the simplified expression:
- Combine the results of the like terms and constants: [tex]\(3z - 9\)[/tex].
Thus, the simplified form of the expression [tex]\((2z - 5) + (z - 4)\)[/tex] is:
[tex]\[ 3z - 9 \][/tex]
1. Distribute and combine like terms:
- Identify like terms in the expression: [tex]\(2z\)[/tex] and [tex]\(z\)[/tex] are like terms, both containing the variable [tex]\(z\)[/tex].
- Combine the coefficients of the like terms. For the [tex]\(z\)[/tex] terms: [tex]\(2z + z\)[/tex].
- Combine the constants: [tex]\(-5\)[/tex] and [tex]\(-4\)[/tex].
2. Simplify the expression:
- Combine the [tex]\(z\)[/tex] terms: [tex]\(2z + z = 3z\)[/tex].
- Combine the constants: [tex]\(-5 - 4 = -9\)[/tex].
3. Write the simplified expression:
- Combine the results of the like terms and constants: [tex]\(3z - 9\)[/tex].
Thus, the simplified form of the expression [tex]\((2z - 5) + (z - 4)\)[/tex] is:
[tex]\[ 3z - 9 \][/tex]