Sure, let's go through the given expression step by step:
Given expression: [tex]\((8x + 12) \div 4\)[/tex]
### Step 1: Express Division as Multiplication by a Fraction
[tex]\[ (8x + 12) \div 4 = (8x + 12) \times \frac{1}{4} \][/tex]
### Step 2: Distribute [tex]\(\frac{1}{4}\)[/tex] to Each Term in the Parentheses
[tex]\[ (8x + 12) \times \frac{1}{4} = 8x \times \frac{1}{4} + 12 \times \frac{1}{4} \][/tex]
### Step 3: Simplify Each Term
1. Simplify [tex]\(8x \times \frac{1}{4}\)[/tex]:
[tex]\[ 8x \times \frac{1}{4} = \frac{8}{4} \times x = 2x \][/tex]
2. Simplify [tex]\(12 \times \frac{1}{4}\)[/tex]:
[tex]\[ 12 \times \frac{1}{4} = \frac{12}{4} = 3 \][/tex]
### Step 4: Combine the Simplified Terms
[tex]\[ 2x + 3 \][/tex]
So, the final simplified expression is:
[tex]\[ (8x + 12) \div 4 = 2x + 3 \][/tex]
Therefore, [tex]\(\boxed{2x + 3}\)[/tex] is the result.