Select the correct answer.

What is the inverse of this function?
[tex]\[ f(x)=\sqrt[3]{x+12} \][/tex]

A. [tex]\[ f^{-1}(x)=12-x^3 \][/tex]

B. [tex]\[ f^{-1}(x)=x-12 \][/tex]

C. [tex]\[ f^{-1}(x)=x+12 \][/tex]

D. [tex]\[ f^{-1}(x)=x^3-12 \][/tex]



Answer :

To find the inverse of the function [tex]\( f(x)=\sqrt[3]{x+12} \)[/tex], we need to follow these steps:

1. Define the function and state what we need to do:
We start with the function [tex]\( f(x) = \sqrt[3]{x + 12} \)[/tex]. To find its inverse, we need to express [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]. So, we set [tex]\( y = f(x) \)[/tex]:

[tex]\[ y = \sqrt[3]{x + 12} \][/tex]

2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
To isolate [tex]\( x \)[/tex], we first eliminate the cube root by cubing both sides of the equation:

[tex]\[ y^3 = (x + 12) \][/tex]

3. Isolate [tex]\( x \)[/tex]:
Next, we solve for [tex]\( x \)[/tex] by subtracting 12 from both sides:

[tex]\[ x = y^3 - 12 \][/tex]

4. Rewrite the inverse function:
Since we started with [tex]\( y = f(x) \)[/tex] and isolated [tex]\( x \)[/tex], the equation we derived, [tex]\( x = y^3 - 12 \)[/tex], represents the inverse function. Therefore, we denote the inverse function as:

[tex]\[ f^{-1}(x) = x^3 - 12 \][/tex]

So, the correct inverse function is [tex]\( f^{-1}(x) = x^3 - 12 \)[/tex].

Conclusion:
The correct answer is option D:

[tex]\[ f^{-1}(x) = x^3 - 12 \][/tex]

Therefore, the answer is [tex]\(\boxed{4}\)[/tex].