Answer :

Sure, let's solve the equation [tex]\( w = 3b - 2a + 2 \)[/tex] for [tex]\( a \)[/tex]:

1. Start with the given equation:
[tex]\[ w = 3b - 2a + 2 \][/tex]

2. Isolate the term involving [tex]\( a \)[/tex]:
[tex]\[ w - 3b = -2a + 2 \][/tex]

3. Rearrange the equation to collect constants on one side:
[tex]\[ w - 3b - 2 = -2a \][/tex]

4. Divide both sides by [tex]\(-2\)[/tex] to solve for [tex]\( a \)[/tex]:
[tex]\[ a = \frac{w - 3b - 2}{-2} \][/tex]

5. Simplify the expression:
[tex]\[ a = \frac{-(w - 3b - 2)}{2} \][/tex]
[tex]\[ a = \frac{-w + 3b + 2}{2} \][/tex]

6. Rewrite in a more conventional form:
[tex]\[ a = \frac{3b}{2} - \frac{w}{2} + 1 \][/tex]

So, the solution for [tex]\( a \)[/tex] in terms of [tex]\( w \)[/tex] and [tex]\( b \)[/tex] is:
[tex]\[ a = \frac{3b}{2} - \frac{w}{2} + 1 \][/tex]

This expression represents [tex]\( a \)[/tex] fully isolated.