risk13
Answered

Multiply the fractions.

[tex]\[
\frac{15}{4} \times \frac{35}{24} \times \frac{16}{35}
\][/tex]

A. [tex]\(\frac{21}{2}\)[/tex]

B. [tex]\(\frac{5}{8}\)[/tex]

C. [tex]\(\frac{8}{7}\)[/tex]

D. [tex]\(\frac{5}{2}\)[/tex]



Answer :

Let's find the product of the given fractions step-by-step:

We need to multiply the fractions:
[tex]\[ \frac{15}{4} \times \frac{35}{24} \times \frac{16}{35} \][/tex]

First, multiply the numerators together:
[tex]\[ 15 \times 35 \times 16 \][/tex]

Next, multiply the denominators together:
[tex]\[ 4 \times 24 \times 35 \][/tex]

Now, let's write these products down in fraction form:
[tex]\[ \frac{15 \times 35 \times 16}{4 \times 24 \times 35} \][/tex]

Notice that both the numerator and the denominator contain the factor 35, which can be cancelled out:
[tex]\[ \frac{15 \times \cancel{35} \times 16}{4 \times 24 \times \cancel{35}} = \frac{15 \times 16}{4 \times 24} \][/tex]

Next, let's simplify the fraction [tex]\(\frac{15 \times 16}{4 \times 24}\)[/tex]:
[tex]\[ \frac{240}{96} \][/tex]

To simplify [tex]\(\frac{240}{96}\)[/tex], we find the greatest common divisor (GCD) of 240 and 96, which is 48. Then, we divide both the numerator and the denominator by their GCD:
[tex]\[ \frac{240 \div 48}{96 \div 48} = \frac{5}{2} \][/tex]

Thus, the product of the fractions [tex]\(\frac{15}{4} \times \frac{35}{24} \times \frac{16}{35}\)[/tex] is:
[tex]\[ \boxed{\frac{5}{2}} \][/tex]