Solve the proportion using cross multiplication.

[tex]\[
\begin{array}{c}
\frac{2x + 1}{3} = \frac{x + 5}{2} \\
x = \, ?
\end{array}
\][/tex]



Answer :

To solve the proportion [tex]\(\frac{2x + 1}{3} = \frac{x + 5}{2}\)[/tex], follow these detailed steps:

1. Cross-Multiply: To eliminate the fractions, cross-multiply the terms of the equation. This means:
[tex]\[ 2 \times (2x + 1) = 3 \times (x + 5) \][/tex]

2. Distribute the Numbers: Expand both sides of the equation by distributing the coefficients:
[tex]\[ 2 \times (2x + 1) \Rightarrow 2 \times 2x + 2 \times 1 = 4x + 2 \][/tex]
[tex]\[ 3 \times (x + 5) \Rightarrow 3 \times x + 3 \times 5 = 3x + 15 \][/tex]
Now the equation looks like:
[tex]\[ 4x + 2 = 3x + 15 \][/tex]

3. Isolate the Variable [tex]\( x \)[/tex]: To solve for [tex]\( x \)[/tex], move all the [tex]\( x \)[/tex]-terms to one side and constant terms to the opposite side. First, subtract [tex]\( 3x \)[/tex] from both sides:
[tex]\[ 4x + 2 - 3x = 3x + 15 - 3x \][/tex]
Simplifying this, we get:
[tex]\[ x + 2 = 15 \][/tex]

4. Solve for [tex]\( x \)[/tex]: Next, isolate [tex]\( x \)[/tex] by subtracting 2 from both sides:
[tex]\[ x + 2 - 2 = 15 - 2 \][/tex]
[tex]\[ x = 13 \][/tex]

Therefore, the value of [tex]\( x \)[/tex] is:
[tex]\[ x = 13 \][/tex]