Write 3.7 as a mixed number.

Let [tex]x = 3.7[/tex]

[tex]\[
\begin{array}{rcl}
10x & = & 37 \\
x & = & 3.7
\end{array}
\][/tex]

So, 3.7 is equal to [tex]3 \frac{7}{10}[/tex].



Answer :

To express [tex]\(3.7\)[/tex] as a mixed number, let's go through the steps in detail.

Let [tex]\( x = 3.7 \)[/tex].

First, consider multiplying [tex]\( x \)[/tex] by [tex]\( 10 \)[/tex]:
[tex]\[ 10x = 37.0 \][/tex]

Next, we observe the value when [tex]\( x \)[/tex] is multiplied by [tex]\( 9 \)[/tex]:
[tex]\[ 9x = 33.3 \][/tex]

By simple subtraction:
[tex]\[ 10x - x = 37.0 - 3.7 \][/tex]
[tex]\[ 9x = 33.3 \][/tex]

Given that [tex]\( x = 3.7 \)[/tex], we can separate it into an integer part and a fractional part.

Here, the integer part of [tex]\( 3.7 \)[/tex] is:
[tex]\[ \text{Integer part} = 3 \][/tex]

Next, we determine the fractional part:
[tex]\[ \text{Fractional part} = 3.7 - 3 = 0.7 \][/tex]

Now, we convert the fractional part [tex]\( 0.7 \)[/tex] into a fraction:
[tex]\[ 0.7 = \frac{7}{10} \][/tex]

Therefore, the mixed number form of [tex]\( 3.7 \)[/tex] is written as the sum of its integer and fractional parts:
[tex]\[ 3.7 = 3 + \frac{7}{10} \][/tex]

So [tex]\( 3.7 \)[/tex] is equal to:
[tex]\[ 3 \frac{7}{10} \][/tex]