Prove that:
(a) [tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cos A - \sin B \cos B} = \tan (A + B) \][/tex]



Answer :

Certainly! Let's prove the given trigonometric identity:

[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cos A - \sin B \cos B} = \tan(A+B) \][/tex]

### Step-by-Step Solution

1. Express Numerator using Difference of Squares:
The numerator is [tex]\( \sin^2 A - \sin^2 B \)[/tex]. We can use the difference of squares formula:
[tex]\[ \sin^2 A - \sin^2 B = (\sin A + \sin B)(\sin A - \sin B) \][/tex]

2. Express Denominator using Angle Sum and Difference Identities:
Consider the denominator [tex]\( \sin A \cos A - \sin B \cos B \)[/tex].

We can rewrite each term using double-angle identities:
[tex]\[ \sin A \cos A = \frac{1}{2} \sin(2A) \quad \text{and} \quad \sin B \cos B = \frac{1}{2} \sin(2B) \][/tex]

Therefore:
[tex]\[ \sin A \cos A - \sin B \cos B = \frac{1}{2} \sin (2A) - \frac{1}{2} \sin (2B) = \frac{1}{2} [\sin(2A) - \sin(2B)] \][/tex]

3. Simplify the Original Expression:
Substituting the numerator and denominator expressions back into the given identity:
[tex]\[ \frac{(\sin A + \sin B)(\sin A - \sin B)}{\frac{1}{2} [\sin(2A) - \sin(2B)]} \][/tex]

Simplify the fraction by multiplying the numerator and the denominator by 2:
[tex]\[ \frac{2 (\sin A + \sin B)(\sin A - \sin B)}{\sin(2A) - \sin(2B)} \][/tex]

4. Use Sine Angle Sum and Difference Identities:
Now consider the sine angle sum and difference identities.
[tex]\[ \sin(2A) - \sin(2B) = 2 \cos\left(\frac{2A + 2B}{2}\right) \sin\left( \frac{2A - 2B}{2}\right) \][/tex]
Simplifying further:
[tex]\[ \sin(2A) - \sin(2B) = 2 \cos(A + B) \sin(A - B) \][/tex]

5. Transforming the Expression:
We substitute back this result:
[tex]\[ \frac{2 (\sin A + \sin B)(\sin A - \sin B)}{2 \cos(A+B) \sin(A-B)} \][/tex]
The 2 in the numerator and denominator cancels out:
[tex]\[ \frac{(\sin A + \sin B)(\sin A - \sin B)}{\cos(A+B) \sin(A-B)} \][/tex]

6. Recognize the Form of the Tangent Function:
Consider:
[tex]\[ (\sin A - \sin B) = 2 \cos\left( \frac{A+B}{2} \right) \sin\left( \frac{A-B}{2} \right) \][/tex]
and
[tex]\[ (\sin A + \sin B) = 2 \sin\left( \frac{A+B}{2} \right) \cos\left( \frac{A-B}{2} \right) \][/tex]

Substituting back, we note that:
[tex]\[ \frac{2 \sin\left( \frac{A+B}{2} \right) \cos\left( \frac{A-B}{2} \right) \cdot 2 \cos\left( \frac{A+B}{2} \right) \sin\left( \frac{A-B}{2} \right)}{ \cos(A+B) \sin(A-B)} \][/tex]
[tex]\[ = \frac{4 \sin\left( \frac{A+B}{2} \right) \cos\left( \frac{A+B}{2} \right) \sin\left( \frac{A-B}{2} \right) \cos\left( \frac{A-B}{2} \right)}{ \cos(A+B) \sin(A-B)} \][/tex]

Finally:
[tex]\[ = \frac{4 \frac{1}{2} \sin(A+B)}{\cos(A+B)} = \tan(A+B) \][/tex]

Therefore, we have proved:
[tex]\[ \frac{\sin^2 A - \sin^2 B}{\sin A \cos A - \sin B \cos B} = \tan(A+B) \][/tex]