\begin{tabular}{ccc}
[tex]$x$[/tex] & [tex]$f$[/tex] & [tex]$c t$[/tex] \\
[tex]$0-10$[/tex] & 9 & 9 \\
[tex]$10-20$[/tex] & 12 & 20 \\
[tex]$20-30$[/tex] & 20 & 40 \\
[tex]$30-40$[/tex] & [tex]$m$[/tex] & [tex]$40+m$[/tex] \\
[tex]$40-50$[/tex] & 30 & [tex]$70+m$[/tex] \\
[tex]$50-60$[/tex] & 16 & [tex]$86+m$[/tex] \\
\end{tabular}



Answer :

Alright, let's analyze the situation step-by-step and solve for [tex]\( m \)[/tex]:

Given the following frequency distribution table:

[tex]\[ \begin{array}{ccc} x & f & ct \\ 0-10 & 9 & 9 \\ 10-20 & 12 & 20 \\ 20-30 & 20 & 40 \\ 30-40 & m & 40+m \\ 40-50 & 30 & 70+m \\ 50-60 & 16 & 86+m \\ \end{array} \][/tex]

where:
- [tex]\( x \)[/tex] represents the class intervals,
- [tex]\( f \)[/tex] represents the frequency of each class interval,
- [tex]\( ct \)[/tex] represents the cumulative frequency up to and including that class interval,
- [tex]\( m \)[/tex] is a variable we need to determine.

1. Calculate the cumulative frequency for each class interval:

Cumulative frequency ([tex]\( ct \)[/tex]) is the sum of the frequencies up to the current class interval.

- For the interval 0-10: [tex]\( ct = 9 \)[/tex]
- For the interval 10-20: [tex]\( ct = 9 + 12 = 21 \)[/tex] (Note: Typo in your table, it should be 21 instead of 20)
- For the interval 20-30: [tex]\( ct = 21 + 20 = 41 \)[/tex] (Note: Typo in your table, it should be 41 instead of 40)
- For the interval 30-40: [tex]\( ct = 41 + m = 41 + m \)[/tex]
- For the interval 40-50: [tex]\( ct = (41 + m) + 30 = 71 + m \)[/tex]
- For the interval 50-60: [tex]\( ct = (71 + m) + 16 = 87 + m \)[/tex]

2. Compare cumulative frequencies with the provided table values:

- Given [tex]\( ct_{30-40} = 40 + m \)[/tex]: This matches our calculated value [tex]\( 41 + m \)[/tex].
- Given [tex]\( ct_{40-50} = 70 + m \)[/tex]: This matches our calculated value [tex]\( 71 + m \)[/tex].
- Given [tex]\( ct_{50-60} = 86 + m \)[/tex]: This value is incorrect based on our calculations. It should have been [tex]\( 87 + m \)[/tex]. As no condition is violating any given information.

Hence, since each interval matches correctly and no further correction is needed, it implies there is no need for any adjustments, as [tex]\( m \)[/tex] becomes consistently added to every [tex]\( ct \)[/tex] passed interval `30-40`.

To summarize:

The solution conforms [tex]\( m \)[/tex] carried through each observation correctly, no errors or corrections indicated.