Solve the following equations:

[tex]\[ \begin{array}{l}
1. \quad 11r + 60 = 16 \\
2. \quad y - 24 = -7 \\
3. \quad 23 - x = 13 \\
4. \quad -67 = 6x - 1 \\
5. \quad -4e - 9 = 19 \\
6. \quad -8 = 32 - 5q \\
7. \quad 6 + 10k = 256
\end{array} \][/tex]



Answer :

Sure, let's solve each equation step-by-step.

1. Solve for [tex]\( r \)[/tex]:

[tex]\[ 11r + 60 = 16 \][/tex]

Start by isolating [tex]\( r \)[/tex]:

[tex]\[ 11r = 16 - 60 \][/tex]

Simplify the right-hand side:

[tex]\[ 11r = -44 \][/tex]

Divide both sides by 11:

[tex]\[ r = \frac{-44}{11} \][/tex]

[tex]\[ r = -4 \][/tex]

2. Solve for [tex]\( y \)[/tex]:

[tex]\[ y - 24 = -7 \][/tex]

Add 24 to both sides to isolate [tex]\( y \)[/tex]:

[tex]\[ y = -7 + 24 \][/tex]

Simplify the right-hand side:

[tex]\[ y = 17 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

[tex]\[ 23 - x = 13 \][/tex]

Subtract 23 from both sides:

[tex]\[ -x = 13 - 23 \][/tex]

Simplify the right-hand side:

[tex]\[ -x = -10 \][/tex]

Multiply both sides by -1:

[tex]\[ x = 10 \][/tex]

4. Solve for [tex]\( x \)[/tex] in the equation [tex]\( -67 = 6x - 1 \)[/tex]:

[tex]\[ -67 = 6x - 1 \][/tex]

Add 1 to both sides to isolate the term with [tex]\( x \)[/tex]:

[tex]\[ -67 + 1 = 6x \][/tex]

Simplify the left-hand side:

[tex]\[ -66 = 6x \][/tex]

Divide both sides by 6:

[tex]\[ x = \frac{-66}{6} \][/tex]

[tex]\[ x = -11 \][/tex]

5. Solve for [tex]\( e \)[/tex]:

[tex]\[ -4e - 9 = 19 \][/tex]

Add 9 to both sides to isolate the term with [tex]\( e \)[/tex]:

[tex]\[ -4e = 19 + 9 \][/tex]

Simplify the right-hand side:

[tex]\[ -4e = 28 \][/tex]

Divide both sides by -4:

[tex]\[ e = \frac{28}{-4} \][/tex]

[tex]\[ e = -7 \][/tex]

6. Solve for [tex]\( q \)[/tex]:

[tex]\[ -8 = 32 - 5q \][/tex]

Subtract 32 from both sides:

[tex]\[ -8 - 32 = -5q \][/tex]

Simplify the left-hand side:

[tex]\[ -40 = -5q \][/tex]

Divide both sides by -5:

[tex]\[ q = \frac{-40}{-5} \][/tex]

[tex]\[ q = 8 \][/tex]

7. Solve for [tex]\( k \)[/tex]:

[tex]\[ 6 + 10k = 256 \][/tex]

Subtract 6 from both sides to isolate the term with [tex]\( k \)[/tex]:

[tex]\[ 10k = 256 - 6 \][/tex]

Simplify the right-hand side:

[tex]\[ 10k = 250 \][/tex]

Divide both sides by 10:

[tex]\[ k = \frac{250}{10} \][/tex]

[tex]\[ k = 25 \][/tex]

So, the solutions are:

[tex]\[ r = -4, \quad y = 17, \quad x = 10, \quad x_1 = -11, \quad e = -7, \quad q = 8, \quad k = 25 \][/tex]