Answer :

To determine the ratio in which the point [tex]\((15, 11)\)[/tex] divides the line segment joining the points [tex]\((5, 15)\)[/tex] and [tex]\((20, 9)\)[/tex], we can use the section formula.

The section formula states that a point [tex]\((x, y)\)[/tex] dividing the line segment joining [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] in the ratio [tex]\(m:n\)[/tex] has coordinates:
[tex]\[ \left( \frac{mx_2 + nx_1}{m + n}, \frac{my_2 + ny_1}{m + n} \right) \][/tex]

Given:
[tex]\[ (x_1, y_1) = (5, 15) \\ (x_2, y_2) = (20, 9) \\ (x, y) = (15, 11) \][/tex]

We need to find the ratio [tex]\( \frac{m}{n} \)[/tex] such that:
[tex]\[ 15 = \frac{m \cdot 20 + n \cdot 5}{m + n} \\ 11 = \frac{m \cdot 9 + n \cdot 15}{m + n} \][/tex]

Let's solve these equations one by one.

1. Solving for [tex]\(x\)[/tex]:

From the [tex]\(x\)[/tex]-coordinate:
[tex]\[ 15 = \frac{20m + 5n}{m + n} \][/tex]

Multiply both sides by [tex]\(m + n\)[/tex]:
[tex]\[ 15(m + n) = 20m + 5n \\ 15m + 15n = 20m + 5n \][/tex]

Rearrange to isolate [tex]\(m\)[/tex] and [tex]\(n\)[/tex]:
[tex]\[ 15n - 5n = 20m - 15m \\ 10n = 5m \\ m = 2n \][/tex]

This implies that the ratio [tex]\( \frac{m}{n} = 2 \)[/tex].

2. Verifying with [tex]\(y\)[/tex]-coordinate:

From the [tex]\(y\)[/tex]-coordinate:
[tex]\[ 11 = \frac{9m + 15n}{m + n} \][/tex]

Again, multiply both sides by [tex]\(m + n\)[/tex]:
[tex]\[ 11(m + n) = 9m + 15n \\ 11m + 11n = 9m + 15n \][/tex]

Rearrange to isolate [tex]\(m\)[/tex] and [tex]\(n\)[/tex]:
[tex]\[ 11m - 9m = 15n - 11n \\ 2m = 4n \\ m = 2n \][/tex]

This confirms that the ratio [tex]\( \frac{m}{n} = 2 \)[/tex].

Thus, the point [tex]\((15, 11)\)[/tex] divides the line segment joining the points [tex]\((5, 15)\)[/tex] and [tex]\((20, 9)\)[/tex] in the ratio [tex]\(2:1\)[/tex].