For the function below, evaluate the expression:

[tex]\[ f(x) = 23x - 12 \][/tex]

[tex]\[ \frac{f(x + h) - f(x)}{h} \][/tex]

A) 23
B) 11
C) 23x
D) -23



Answer :

To solve for the difference quotient [tex]\(\frac{f(x + h) - f(x)}{h}\)[/tex] for the function [tex]\(f(x) = 23x - 12\)[/tex], we need to follow these steps:

1. Define [tex]\(f(x)\)[/tex] and [tex]\(f(x + h)\)[/tex]:
[tex]\[ f(x) = 23x - 12 \][/tex]
[tex]\[ f(x + h) = 23(x + h) - 12 \][/tex]

2. Expand and simplify [tex]\(f(x + h)\)[/tex]:
[tex]\[ f(x + h) = 23(x + h) - 12 = 23x + 23h - 12 \][/tex]

3. Find the difference [tex]\(f(x + h) - f(x)\)[/tex]:
[tex]\[ f(x + h) - f(x) = (23x + 23h - 12) - (23x - 12) \][/tex]
[tex]\[ = 23x + 23h - 12 - 23x + 12 \][/tex]
[tex]\[ = 23h \][/tex]

4. Divide the result by [tex]\(h\)[/tex]:
[tex]\[ \frac{f(x + h) - f(x)}{h} = \frac{23h}{h} \][/tex]

5. Simplify the division:
[tex]\[ \frac{23h}{h} = 23 \][/tex]

Thus, the difference quotient [tex]\(\frac{f(x + h) - f(x)}{h}\)[/tex] for the function [tex]\(f(x) = 23x - 12\)[/tex] is 23.

Considering the provided options:
A) 23
B) 11
C) 23x
D) -23

The correct answer is:
A) 23