Select the correct answer.

How many moles are contained in [tex]$3.131 \times 10^{24}$[/tex] particles?

A. [tex]5.199 \, \text{mol}[/tex]
B. [tex]18.85 \, \text{mol}[/tex]
C. [tex]0.5199 \times 10^{23} \, \text{mol}[/tex]
D. [tex]1.885 \times 10^{47} \, \text{mol}[/tex]



Answer :

To determine how many moles are contained in [tex]\(3.131 \times 10^{24}\)[/tex] particles, we need to use Avogadro's number. Avogadro's number, [tex]\(N_A\)[/tex], is [tex]\(6.022 \times 10^{23}\)[/tex] particles per mole.

The number of moles, [tex]\(n\)[/tex], can be calculated using the formula:

[tex]\[ n = \frac{\text{number of particles}}{N_A} \][/tex]

Given:
- The number of particles is [tex]\(3.131 \times 10^{24}\)[/tex].
- Avogadro's number, [tex]\(N_A\)[/tex], is [tex]\(6.022 \times 10^{23}\)[/tex].

Now, let's substitute the given values into the formula:

[tex]\[ n = \frac{3.131 \times 10^{24}}{6.022 \times 10^{23}} \][/tex]

Performing the division:

[tex]\[ n = 5.199269345732314 \][/tex]

Thus, the number of moles is approximately [tex]\(5.199\)[/tex].

So, the correct answer is:
A. [tex]\(\quad 5.199 \, \text{mol}\)[/tex]