To determine how many moles are contained in [tex]\(3.131 \times 10^{24}\)[/tex] particles, we need to use Avogadro's number. Avogadro's number, [tex]\(N_A\)[/tex], is [tex]\(6.022 \times 10^{23}\)[/tex] particles per mole.
The number of moles, [tex]\(n\)[/tex], can be calculated using the formula:
[tex]\[
n = \frac{\text{number of particles}}{N_A}
\][/tex]
Given:
- The number of particles is [tex]\(3.131 \times 10^{24}\)[/tex].
- Avogadro's number, [tex]\(N_A\)[/tex], is [tex]\(6.022 \times 10^{23}\)[/tex].
Now, let's substitute the given values into the formula:
[tex]\[
n = \frac{3.131 \times 10^{24}}{6.022 \times 10^{23}}
\][/tex]
Performing the division:
[tex]\[
n = 5.199269345732314
\][/tex]
Thus, the number of moles is approximately [tex]\(5.199\)[/tex].
So, the correct answer is:
A. [tex]\(\quad 5.199 \, \text{mol}\)[/tex]