Select the correct answer.

Which algebraic expression is equivalent to this expression?

[tex]\[3(2x - 8) - 11x\][/tex]

A. [tex]\(-17x - 24\)[/tex]

B. [tex]\(-5x - 8\)[/tex]

C. [tex]\(-5x - 24\)[/tex]

D. [tex]\(-17x + 24\)[/tex]



Answer :

Sure, let's simplify the given algebraic expression step-by-step:

We start with the expression:
[tex]\[ 3(2x - 8) - 11x \][/tex]

Step 1: Distribute the 3 across the parenthesis:
Using the distributive property of multiplication over addition:
[tex]\[ 3 \cdot 2x + 3 \cdot (-8) - 11x \][/tex]
[tex]\[ 6x - 24 - 11x \][/tex]

Step 2: Combine like terms:
We need to combine the [tex]\(6x\)[/tex] and [tex]\(-11x\)[/tex]:
[tex]\[ 6x - 11x - 24 \][/tex]
[tex]\[ (6 - 11)x - 24 \][/tex]
[tex]\[ -5x - 24 \][/tex]

So, the expression [tex]\(3(2x - 8) - 11x\)[/tex] simplifies to:
[tex]\[ -5x - 24 \][/tex]

Thus, the equivalent expression is:
[tex]\[ -5x - 24 \][/tex]

The correct answer is:
[tex]\[ \boxed{C. -5x - 24} \][/tex]