Given [tex]$f(x) = 6x + 2$[/tex], find [tex]$f(x + 3)$[/tex].

A. [tex]$f(x+3) = x + 5$[/tex]
B. [tex]$f(x+3) = 6x^2 + 20x + 6$[/tex]
C. [tex][tex]$f(x+3) = 6x + 5$[/tex][/tex]
D. [tex]$f(x+3) = 6x + 20$[/tex]



Answer :

To find [tex]\( f(x+3) \)[/tex] for the function [tex]\( f(x) = 6x + 2 \)[/tex]:

1. Start by substituting [tex]\( x+3 \)[/tex] into the function:
The function given is [tex]\( f(x) = 6x + 2 \)[/tex].
So, [tex]\( f(x+3) \)[/tex] means we need to replace every [tex]\( x \)[/tex] in [tex]\( f(x) \)[/tex] with [tex]\( (x+3) \)[/tex].

2. Substitute [tex]\( x+3 \)[/tex] into the function:
[tex]\[ f(x+3) = 6(x+3) + 2 \][/tex]

3. Distribute the 6 to both [tex]\( x \)[/tex] and 3:
[tex]\[ 6(x+3) = 6x + 18 \][/tex]

4. Add 2 to the result:
[tex]\[ 6x + 18 + 2 = 6x + 20 \][/tex]

So, the expression for [tex]\( f(x+3) \)[/tex] is:
[tex]\[ f(x+3) = 6x + 20 \][/tex]

Therefore, from the given options, the correct answer is:
[tex]\[ f(x+3) = 6x + 20 \][/tex]