Find a cosine equation having the following characteristics:

Amplitude: [tex]4[/tex]
Period: [tex]\frac{2\pi}{5}[/tex]
Horizontal Shift: [tex]-\frac{\pi}{10}[/tex]
Vertical Shift: [tex]3[/tex]

[tex]y = 4 \cos \left(\frac{5}{2} x + \frac{\pi}{2}\right) + 3[/tex]



Answer :

To find a cosine equation with the given characteristics, we need to understand how each parameter affects the cosine function. The general form of a cosine function is:

[tex]\[ y = A \cos(B(x - C)) + D \][/tex]

where:
- [tex]\( A \)[/tex] is the amplitude,
- [tex]\( \frac{2\pi}{B} \)[/tex] is the period,
- [tex]\( C \)[/tex] is the horizontal shift (phase shift),
- [tex]\( D \)[/tex] is the vertical shift.

Given:
- Amplitude, [tex]\( A = 4 \)[/tex]
- Period, [tex]\( \frac{2\pi}{5} \)[/tex]
- Horizontal Shift, [tex]\( -\frac{\pi}{10} \)[/tex]
- Vertical Shift, [tex]\( 3 \)[/tex]

1. Amplitude ([tex]\( A \)[/tex]):
The amplitude is directly given as [tex]\( 4 \)[/tex].

[tex]\[ A = 4 \][/tex]

2. Period:
The period [tex]\( T \)[/tex] of the cosine function is related to [tex]\( B \)[/tex] by the formula:

[tex]\[ T = \frac{2\pi}{B} \][/tex]

We are given that the period is [tex]\( \frac{2\pi}{5} \)[/tex]. Setting [tex]\( T = \frac{2\pi}{5} \)[/tex], we can solve for [tex]\( B \)[/tex]:

[tex]\[ \frac{2\pi}{B} = \frac{2\pi}{5} \][/tex]
[tex]\[ B = 5 \][/tex]

3. Horizontal Shift ([tex]\( C \)[/tex]):
The horizontal shift is given directly as [tex]\( -\frac{\pi}{10} \)[/tex].

[tex]\[ C = -\frac{\pi}{10} \][/tex]

4. Vertical Shift ([tex]\( D \)[/tex]):
The vertical shift is given directly as [tex]\( 3 \)[/tex].

[tex]\[ D = 3 \][/tex]

Putting it all together, the cosine function with the given characteristics can be written as:

[tex]\[ y = 4 \cos(5(x + \frac{\pi}{10})) + 3 \][/tex]

So the cosine equation that satisfies the conditions is:

[tex]\[ y = 4 \cos \left(5 \left(x + \frac{\pi}{10}\right)\right) + 3 \][/tex]