To determine the mass of the cart when given acceleration and force, we will use the formula based on Newton's second law of motion:
[tex]\[ F = ma \][/tex]
where:
- [tex]\( F \)[/tex] is the force applied,
- [tex]\( m \)[/tex] is the mass of the cart,
- [tex]\( a \)[/tex] is the acceleration.
We need to solve for the mass [tex]\( m \)[/tex].
To isolate [tex]\( m \)[/tex], we can rearrange the formula as follows:
[tex]\[ m = \frac{F}{a} \][/tex]
Given:
- The acceleration [tex]\( a \)[/tex] is [tex]\( 2 \, \text{m/s}^2 \)[/tex],
- The force [tex]\( F \)[/tex] is [tex]\( 60 \, \text{N} \)[/tex].
Substitute the given values into the rearranged formula:
[tex]\[ m = \frac{60 \, \text{N}}{2 \, \text{m/s}^2} \][/tex]
Now calculate this:
[tex]\[ m = 30 \, \text{kg} \][/tex]
So, the mass of the cart is [tex]\( 30 \, \text{kg} \)[/tex].
The correct answer is:
[tex]\[ \boxed{30 \, \text{kg}} \][/tex]