What is the perimeter, [tex][tex]$P$[/tex][/tex], of a rectangle that has a length of [tex]$x+5$[/tex] and a width of [tex]$y-1$[/tex]?

A. [tex]$P = 2x + 2y + 8$[/tex]
B. [tex][tex]$P = x + y + 4$[/tex][/tex]
C. [tex]$P = x + y + 6$[/tex]
D. [tex]$P = 2x + 2y - 8$[/tex]



Answer :

To determine the perimeter [tex]\(P\)[/tex] of a rectangle, we need to use the perimeter formula for a rectangle, which is given by:

[tex]\[ P = 2 \times (\text{length} + \text{width}) \][/tex]

In this particular problem, the length of the rectangle is provided as [tex]\(x+5\)[/tex] and the width is provided as [tex]\(y-1\)[/tex].

Step-by-step solution:

1. Identify the length and width:
- Length [tex]\( = x + 5 \)[/tex]
- Width [tex]\( = y - 1 \)[/tex]

2. Express the perimeter formula using the identified length and width:
[tex]\[ P = 2 \times (\text{length} + \text{width}) \][/tex]

3. Substitute the values of length and width into the formula:
[tex]\[ P = 2 \times ((x + 5) + (y - 1)) \][/tex]

4. Simplify the expression inside the parentheses:
[tex]\[ P = 2 \times (x + y + 5 - 1) \][/tex]

5. Combine like terms inside the parentheses:
[tex]\[ P = 2 \times (x + y + 4) \][/tex]

6. Distribute the 2 across the terms inside the parentheses:
[tex]\[ P = 2 \times x + 2 \times y + 2 \times 4 \][/tex]
[tex]\[ P = 2x + 2y + 8 \][/tex]

Thus, the correct expression for the perimeter [tex]\(P\)[/tex] of the rectangle is:
[tex]\[ P = 2x + 2y + 8 \][/tex]

So, the answer is:
[tex]\[ P = 2 x + 2 y + 8 \][/tex]

Which matches the first option given:
[tex]\[ P = 2 x + 2 y + 8 \][/tex]