Simplify [tex]\left(5x^2 + 3x + 4\right) + \left(2x^2 - 6x + 3\right)[/tex].

A. [tex]7x^2 + 3x + 7[/tex]
B. [tex]7x^2 + 9x + 7[/tex]
C. [tex]7x^2 - 3x + 7[/tex]
D. [tex]7x^2 - 3x + 1[/tex]



Answer :

To simplify the given expression [tex]\(\left(5x^2 + 3x + 4\right) + \left(2x^2 - 6x + 3\right)\)[/tex], follow these steps:

1. Identify like terms: These are terms that have the same power of [tex]\(x\)[/tex]. In this case, we have:
- [tex]\(5x^2\)[/tex] and [tex]\(2x^2\)[/tex] (these are the quadratic terms)
- [tex]\(3x\)[/tex] and [tex]\(-6x\)[/tex] (these are the linear terms)
- [tex]\(4\)[/tex] and [tex]\(3\)[/tex] (these are the constant terms)

2. Add the coefficients of the quadratic terms:
[tex]\[ 5x^2 + 2x^2 = (5 + 2)x^2 = 7x^2 \][/tex]

3. Add the coefficients of the linear terms:
[tex]\[ 3x + (-6x) = (3 - 6)x = -3x \][/tex]

4. Add the constant terms:
[tex]\[ 4 + 3 = 7 \][/tex]

5. Combine the results:
[tex]\[ 7x^2 - 3x + 7 \][/tex]

So, the simplified polynomial is:

[tex]\[ 7x^2 - 3x + 7 \][/tex]

Among the given choices, the correct answer is:
[tex]\[ 7 x^2 - 3 x + 7 \][/tex]