\begin{tabular}{|c|c|}
\hline
Red fabric [tex]$(y d), x$[/tex] & Blue fabric [tex]$(y d), y$[/tex] \\
\hline
1 & 27 \\
\hline
2 & 26 \\
\hline
3 & 25 \\
\hline
4 & 24 \\
\hline
\end{tabular}

Sophie is buying fabric to make items for a craft fair. The table shows some combinations of how much of each color fabric she might buy. Which equations model the total yards of fabric Sophie will buy? Check all that apply.

A. [tex]$x + y = 28$[/tex]
B. [tex]$28 + x = y$[/tex]
C. [tex]$x - y = 28$[/tex]
D. [tex]$28 - x = y$[/tex]
E. [tex]$28 - y = x$[/tex]



Answer :

To determine which equations model the total yards of fabric Sophie will buy, we need to evaluate each given equation using the pairs of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] from the table. Let’s examine each equation one by one with the provided combinations of [tex]\(x\)[/tex] and [tex]\(y\)[/tex].

Here are the pairs given:
- [tex]\( (x, y) = (1, 27) \)[/tex]
- [tex]\( (x, y) = (2, 26) \)[/tex]
- [tex]\( (x, y) = (3, 25) \)[/tex]
- [tex]\( (x, y) = (4, 24) \)[/tex]

1. [tex]\( x + y = 28 \)[/tex]

Check if the sum of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] equals 28 for each pair:
- For [tex]\( (1, 27) \)[/tex]: [tex]\( 1 + 27 = 28 \)[/tex]
- For [tex]\( (2, 26) \)[/tex]: [tex]\( 2 + 26 = 28 \)[/tex]
- For [tex]\( (3, 25) \)[/tex]: [tex]\( 3 + 25 = 28 \)[/tex]
- For [tex]\( (4, 24) \)[/tex]: [tex]\( 4 + 24 = 28 \)[/tex]

All pairs satisfy the equation [tex]\( x + y = 28 \)[/tex].

2. [tex]\( 28 + x = y \)[/tex]

Check if adding 28 to [tex]\(x\)[/tex] gives [tex]\(y\)[/tex] for each pair:
- For [tex]\( (1, 27) \)[/tex]: [tex]\( 28 + 1 = 29 \neq 27 \)[/tex]
- For [tex]\( (2, 26) \)[/tex]: [tex]\( 28 + 2 = 30 \neq 26 \)[/tex]
- For [tex]\( (3, 25) \)[/tex]: [tex]\( 28 + 3 = 31 \neq 25 \)[/tex]
- For [tex]\( (4, 24) \)[/tex]: [tex]\( 28 + 4 = 32 \neq 24 \)[/tex]

None of the pairs satisfy the equation [tex]\( 28 + x = y \)[/tex].

3. [tex]\( x - y = 28 \)[/tex]

Check if subtracting [tex]\(y\)[/tex] from [tex]\(x\)[/tex] gives 28 for each pair:
- For [tex]\( (1, 27) \)[/tex]: [tex]\( 1 - 27 = -26 \neq 28 \)[/tex]
- For [tex]\( (2, 26) \)[/tex]: [tex]\( 2 - 26 = -24 \neq 28 \)[/tex]
- For [tex]\( (3, 25) \)[/tex]: [tex]\( 3 - 25 = -22 \neq 28 \)[/tex]
- For [tex]\( (4, 24) \)[/tex]: [tex]\( 4 - 24 = -20 \neq 28 \)[/tex]

None of the pairs satisfy the equation [tex]\( x - y = 28 \)[/tex].

4. [tex]\( 28 - x = y \)[/tex]

Check if subtracting [tex]\(x\)[/tex] from 28 gives [tex]\(y\)[/tex] for each pair:
- For [tex]\( (1, 27) \)[/tex]: [tex]\( 28 - 1 = 27 \)[/tex]
- For [tex]\( (2, 26) \)[/tex]: [tex]\( 28 - 2 = 26 \)[/tex]
- For [tex]\( (3, 25) \)[/tex]: [tex]\( 28 - 3 = 25 \)[/tex]
- For [tex]\( (4, 24) \)[/tex]: [tex]\( 28 - 4 = 24 \)[/tex]

All pairs satisfy the equation [tex]\( 28 - x = y \)[/tex].

5. [tex]\( 28 - y = x \)[/tex]

Check if subtracting [tex]\(y\)[/tex] from 28 gives [tex]\(x\)[/tex] for each pair:
- For [tex]\( (1, 27) \)[/tex]: [tex]\( 28 - 27 = 1 \)[/tex]
- For [tex]\( (2, 26) \)[/tex]: [tex]\( 28 - 26 = 2 \)[/tex]
- For [tex]\( (3, 25) \)[/tex]: [tex]\( 28 - 25 = 3 \)[/tex]
- For [tex]\( (4, 24) \)[/tex]: [tex]\( 28 - 24 = 4 \)[/tex]

All pairs satisfy the equation [tex]\( 28 - y = x \)[/tex].

Therefore, the equations that model the total yards of fabric Sophie will buy are:

- [tex]\( x + y = 28 \)[/tex]
- [tex]\( 28 - x = y \)[/tex]
- [tex]\( 28 - y = x \)[/tex]