Simplify [tex]\((4x - 6) + (3x + 6)\)[/tex].

A. [tex]\(7x - 12\)[/tex]
B. [tex]\(7x\)[/tex]
C. [tex]\(7x + 12\)[/tex]
D. [tex]\(x\)[/tex]



Answer :

To simplify the expression [tex]\((4x - 6) + (3x + 6)\)[/tex], we need to follow a step-by-step process combining like terms.

1. Start with the original expression:
[tex]\[ (4x - 6) + (3x + 6) \][/tex]

2. Remove the parentheses by rewriting the expression:
[tex]\[ 4x - 6 + 3x + 6 \][/tex]

3. Combine the like terms. Like terms are the terms that contain the variable [tex]\(x\)[/tex] and the constant terms.

- Combine the [tex]\(x\)[/tex]-terms:
[tex]\[ 4x + 3x = 7x \][/tex]

- Combine the constants:
[tex]\[ -6 + 6 = 0 \][/tex]

4. The expression simplifies to:
[tex]\[ 7x + 0 \][/tex]

Since [tex]\(7x + 0\)[/tex] is the same as [tex]\(7x\)[/tex], the simplified expression is:
[tex]\[ 7x \][/tex]

Therefore, the correct answer is:
[tex]\[ 7x \][/tex]