A friend gives a neighbor [tex]$13 \frac{2}{3}$[/tex] feet of twine from a brand new spool, leaving [tex]$38 \frac{2}{5}$[/tex] feet of twine on the spool. How many total feet of twine were originally on the spool?

A. [tex][tex]$51 \frac{1}{15}$[/tex][/tex]
B. [tex]$51 \frac{4}{5}$[/tex]
C. [tex]$52 \frac{1}{15}$[/tex]
D. [tex][tex]$52 \frac{1}{5}$[/tex][/tex]



Answer :

Sure! Let's solve the problem step-by-step.

1. The friend gives the neighbor [tex]\(13 \frac{2}{3}\)[/tex] feet of twine.

2. Let's convert this mixed number into an improper fraction to make calculations easier:
[tex]\[ 13 \frac{2}{3} = 13 + \frac{2}{3} = \frac{39}{3} + \frac{2}{3} = \frac{41}{3} \][/tex]

3. The remaining quantity of twine on the spool is [tex]\(38 \frac{2}{5}\)[/tex] feet.

4. Convert this mixed number into an improper fraction:
[tex]\[ 38 \frac{2}{5} = 38 + \frac{2}{5} = \frac{190}{5} + \frac{2}{5} = \frac{192}{5} \][/tex]

5. To find the total original amount of twine on the spool, add the given twine and the remaining twine.

6. First, we need to add the fractions [tex]\(\frac{41}{3}\)[/tex] and [tex]\(\frac{192}{5}\)[/tex]. We find a common denominator to add these fractions. For 3 and 5, the least common multiple is 15:
[tex]\[ \frac{41}{3} = \frac{41 \cdot 5}{3 \cdot 5} = \frac{205}{15} \][/tex]
[tex]\[ \frac{192}{5} = \frac{192 \cdot 3}{5 \cdot 3} = \frac{576}{15} \][/tex]

7. Now, adding these fractions:
[tex]\[ \frac{205}{15} + \frac{576}{15} = \frac{205 + 576}{15} = \frac{781}{15} \][/tex]

8. Converting the improper fraction back to a mixed number:
[tex]\[ \frac{781}{15} = 52 \frac{11}{15} \][/tex]

9. Thus, the total original amount of twine on the spool is:
[tex]\[ 52 \frac{11}{15} \text{ feet} \][/tex]

None of the provided answer choices directly match this form. Given that the numerical calculations yielded approximately:

[tex]\[ 52.06666666666666 \text{ feet} \text{ (same as } 52 + \frac{1}{15}) \][/tex]

This most closely aligns with choice [tex]\( 52 \frac{1}{15} \)[/tex].

Therefore, the correct answer is:
C) [tex]\(52 \frac{1}{15}\)[/tex]