According to the balanced reaction below, calculate the quantity of moles of [tex]NO_2[/tex] gas that forms when [tex]5.20 \times 10^{-3} \, \text{mol}[/tex] of [tex]N_2O_5[/tex] gas completely reacts:

[tex]\[2 \, N_2O_5(g) \rightarrow 4 \, NO_2(g) + O_2(g)\][/tex]



Answer :

To calculate the quantity of moles of [tex]\( NO_2 \)[/tex] gas that forms when [tex]\( 5.20 \times 10^{-3} \)[/tex] moles of [tex]\( N_2O_5 \)[/tex] gas completely reacts, follow these steps:

1. Identify the balanced chemical equation:
Given the reaction:
[tex]\[ 2 N_2O_5(g) \rightarrow 4 NO_2(g) + O_2(g) \][/tex]

2. Determine the mole ratio:
According to the balanced equation, 2 moles of [tex]\( N_2O_5 \)[/tex] produce 4 moles of [tex]\( NO_2 \)[/tex]. This can be simplified to a mole ratio of 1:2 (for every 1 mole of [tex]\( N_2O_5 \)[/tex], 2 moles of [tex]\( NO_2 \)[/tex] are formed).

3. Calculate the moles of [tex]\( NO_2 \)[/tex] formed:
Given that we start with [tex]\( 5.20 \times 10^{-3} \)[/tex] moles of [tex]\( N_2O_5 \)[/tex], use the mole ratio to find the moles of [tex]\( NO_2 \)[/tex]:
[tex]\[ \text{Moles of } NO_2 = 5.20 \times 10^{-3} \times \frac{4}{2} \][/tex]

4. Simplify the calculation:
[tex]\[ \text{Moles of } NO_2 = 5.20 \times 10^{-3} \times 2 \][/tex]

5. Final computation:
[tex]\[ \text{Moles of } NO_2 = 10.40 \times 10^{-3} \][/tex]
[tex]\[ \text{Moles of } NO_2 = 0.0104 \][/tex]

Therefore, the quantity of moles of [tex]\( NO_2 \)[/tex] gas that forms is [tex]\( 0.0104 \)[/tex] moles.