Choose the correct simplification of [tex]$(2x)(4y)$[/tex].

A. [tex]$8xy$[/tex]
B. [tex][tex]$6xy$[/tex][/tex]
C. [tex]$8y$[/tex]
D. [tex]$2xy$[/tex]



Answer :

To simplify the expression [tex]\((2x)(4y)\)[/tex], follow these steps:

1. Identify the constants and the variables: In the expression [tex]\((2x)(4y)\)[/tex], [tex]\(2\)[/tex] and [tex]\(4\)[/tex] are constants, while [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are variables.

2. Multiply the constants together: Multiply the constants [tex]\(2\)[/tex] and [tex]\(4\)[/tex] to get:
[tex]\[ 2 \times 4 = 8 \][/tex]

3. Multiply the variables: Multiply the variables [tex]\(x\)[/tex] and [tex]\(y\)[/tex] to get:
[tex]\[ x \times y = xy \][/tex]

4. Combine the results: Combine the product of the constants and the product of the variables to get the simplified expression:
[tex]\[ 8 \times xy = 8xy \][/tex]

Therefore, the correct simplification of [tex]\((2x)(4y)\)[/tex] is:
[tex]\[ 8xy \][/tex]

The correct answer is [tex]\(\boxed{8xy}\)[/tex].