5. [tex]\((06.03 \text{ MC })\)[/tex]

Simplify [tex]\((4xy)(2x^2y)(3xy)^3\)[/tex].

A. [tex]\(24x^6y^5\)[/tex]

B. [tex]\(24x^2y^3\)[/tex]

C. [tex]\(216x^3y^3\)[/tex]

D. [tex]\(216x^6y^5\)[/tex]



Answer :

To simplify the expression [tex]\((4xy)(2x^2y)(3xy)^3\)[/tex], we follow these steps:

1. First, simplify the exponents within the terms.

2. Rewrite [tex]\((3xy)^3\)[/tex]:

[tex]\[ (3xy)^3 = 3^3 \cdot x^3 \cdot y^3 = 27x^3y^3 \][/tex]

Hence, the expression becomes:

[tex]\[ (4xy)(2x^2y)(27x^3y^3) \][/tex]

3. Now, multiply all the coefficients together:

[tex]\[ 4 \cdot 2 \cdot 27 = 216 \][/tex]

4. Next, combine the powers of [tex]\(x\)[/tex]:

[tex]\[ x \cdot x^2 \cdot x^3 = x^{1+2+3} = x^6 \][/tex]

5. Finally, combine the powers of [tex]\(y\)[/tex]:

[tex]\[ y \cdot y \cdot y^3 = y^{1+1+3} = y^5 \][/tex]

Putting it all together, we get:

[tex]\[ 216x^6y^5 \][/tex]

Therefore, the simplified expression is [tex]\(216x^6y^5\)[/tex], and the correct answer is:

[tex]\[ \boxed{216x^6y^5} \][/tex]