Choose the correct simplification of the expression [tex]\left(c^4\right)^3[/tex].

A. [tex]c^{64}[/tex]
B. [tex]c^{-1}[/tex]
C. [tex]c^7[/tex]
D. [tex]c^{12}[/tex]



Answer :

To solve the expression [tex]\(\left(c^4\right)^3\)[/tex], we need to use the power of a power rule in exponents. The power of a power rule states that [tex]\((a^m)^n = a^{m \cdot n}\)[/tex]. Here is a step-by-step solution:

1. Identify the base and the exponents in the expression [tex]\(\left(c^4\right)^3\)[/tex].

- The base is [tex]\(c\)[/tex].
- The exponent inside the parentheses is 4.
- The exponent outside the parentheses is 3.

2. Apply the power of a power rule:

[tex]\[ \left(c^4\right)^3 = c^{4 \cdot 3} \][/tex]

3. Multiply the exponents together:

[tex]\[ 4 \cdot 3 = 12 \][/tex]

4. Write the simplified expression:

[tex]\[ c^{12} \][/tex]

With these steps, we have simplified the expression [tex]\(\left(c^4\right)^3\)[/tex] to [tex]\(c^{12}\)[/tex].

Therefore, the correct answer is [tex]\(c^{12}\)[/tex].