Choose the correct simplification of the expression [tex]\left(8 x^2\right)^3[/tex].

A. [tex]24 x^5[/tex]
B. [tex]24 x^6[/tex]
C. [tex]512 x^5[/tex]
D. [tex]512 x^6[/tex]



Answer :

To simplify the expression [tex]\(\left(8x^2\right)^3\)[/tex], we need to apply the rules of exponents and algebra. Let's break it down step by step:

1. Exponentiate the constant:
The constant inside the parentheses is 8. We need to raise 8 to the power of 3.
[tex]\[ 8^3 = 8 \times 8 \times 8 = 512 \][/tex]

2. Exponentiate the variable:
The variable inside the parentheses is [tex]\(x^2\)[/tex]. We need to raise [tex]\(x^2\)[/tex] to the power of 3.
[tex]\[ (x^2)^3 = x^{2 \times 3} = x^6 \][/tex]

3. Combine the results:
Combining the two parts, we get:
[tex]\[ (8x^2)^3 = 512 \cdot x^6 \][/tex]

Therefore, the correct simplification of the expression [tex]\(\left(8x^2\right)^3\)[/tex] is [tex]\(512x^6\)[/tex].

So, the correct choice is [tex]\(\boxed{512x^6}\)[/tex].