Answer :
Let's calculate the values of [tex]\( y \)[/tex] for the given equation [tex]\( y = -\frac{2}{3}x - 1 \)[/tex] at the specified [tex]\( x \)[/tex]-values: [tex]\(-6\)[/tex], [tex]\(3\)[/tex], and [tex]\(9\)[/tex].
### Step-by-Step Solution
#### For [tex]\( x = -6 \)[/tex]:
1. Substitute [tex]\( x = -6 \)[/tex] into the equation:
[tex]\[ y = -\frac{2}{3}(-6) - 1 \][/tex]
2. Calculate the multiplication:
[tex]\[ -\frac{2}{3} \times (-6) = 4 \][/tex]
3. Now subtract 1:
[tex]\[ y = 4 - 1 = 3 \][/tex]
Therefore, when [tex]\( x = -6 \)[/tex], [tex]\( y = 3 \)[/tex].
#### For [tex]\( x = 3 \)[/tex]:
1. Substitute [tex]\( x = 3 \)[/tex] into the equation:
[tex]\[ y = -\frac{2}{3}(3) - 1 \][/tex]
2. Calculate the multiplication:
[tex]\[ -\frac{2}{3} \times 3 = -2 \][/tex]
3. Now subtract 1:
[tex]\[ y = -2 - 1 = -3 \][/tex]
Therefore, when [tex]\( x = 3 \)[/tex], [tex]\( y = -3 \)[/tex].
#### For [tex]\( x = 9 \)[/tex]:
1. Substitute [tex]\( x = 9 \)[/tex] into the equation:
[tex]\[ y = -\frac{2}{3}(9) - 1 \][/tex]
2. Calculate the multiplication:
[tex]\[ -\frac{2}{3} \times 9 = -6 \][/tex]
3. Now subtract 1:
[tex]\[ y = -6 - 1 = -7 \][/tex]
Therefore, when [tex]\( x = 9 \)[/tex], [tex]\( y = -7 \)[/tex].
### Summary Table
[tex]\[ \begin{array}{c|c} x & y \\ \hline -6 & 3 \\ 3 & -3 \\ 9 & -7 \\ \end{array} \][/tex]
### Step-by-Step Solution
#### For [tex]\( x = -6 \)[/tex]:
1. Substitute [tex]\( x = -6 \)[/tex] into the equation:
[tex]\[ y = -\frac{2}{3}(-6) - 1 \][/tex]
2. Calculate the multiplication:
[tex]\[ -\frac{2}{3} \times (-6) = 4 \][/tex]
3. Now subtract 1:
[tex]\[ y = 4 - 1 = 3 \][/tex]
Therefore, when [tex]\( x = -6 \)[/tex], [tex]\( y = 3 \)[/tex].
#### For [tex]\( x = 3 \)[/tex]:
1. Substitute [tex]\( x = 3 \)[/tex] into the equation:
[tex]\[ y = -\frac{2}{3}(3) - 1 \][/tex]
2. Calculate the multiplication:
[tex]\[ -\frac{2}{3} \times 3 = -2 \][/tex]
3. Now subtract 1:
[tex]\[ y = -2 - 1 = -3 \][/tex]
Therefore, when [tex]\( x = 3 \)[/tex], [tex]\( y = -3 \)[/tex].
#### For [tex]\( x = 9 \)[/tex]:
1. Substitute [tex]\( x = 9 \)[/tex] into the equation:
[tex]\[ y = -\frac{2}{3}(9) - 1 \][/tex]
2. Calculate the multiplication:
[tex]\[ -\frac{2}{3} \times 9 = -6 \][/tex]
3. Now subtract 1:
[tex]\[ y = -6 - 1 = -7 \][/tex]
Therefore, when [tex]\( x = 9 \)[/tex], [tex]\( y = -7 \)[/tex].
### Summary Table
[tex]\[ \begin{array}{c|c} x & y \\ \hline -6 & 3 \\ 3 & -3 \\ 9 & -7 \\ \end{array} \][/tex]