Answer :

To find the value of [tex]\( a \)[/tex] in the equation [tex]\( 3a + b = 54 \)[/tex] when [tex]\( b = 9 \)[/tex], follow these steps:

1. Substitute the value of [tex]\( b \)[/tex] into the equation:

Given the equation [tex]\( 3a + b = 54 \)[/tex] and knowing that [tex]\( b = 9 \)[/tex], substitute [tex]\( 9 \)[/tex] for [tex]\( b \)[/tex]:

[tex]\[ 3a + 9 = 54 \][/tex]

2. Isolate the term involving [tex]\( a \)[/tex]:

To isolate [tex]\( 3a \)[/tex], subtract [tex]\( 9 \)[/tex] from both sides of the equation:

[tex]\[ 3a + 9 - 9 = 54 - 9 \][/tex]

Simplifying this, we get:

[tex]\[ 3a = 45 \][/tex]

3. Solve for [tex]\( a \)[/tex]:

To solve for [tex]\( a \)[/tex], divide both sides of the equation by [tex]\( 3 \)[/tex]:

[tex]\[ \frac{3a}{3} = \frac{45}{3} \][/tex]

Simplifying this, we find:

[tex]\[ a = 15 \][/tex]

So, the value of [tex]\( a \)[/tex] is [tex]\( 15 \)[/tex]. The correct answer is:
```
15
```