Given the functions [tex]k(x) = 2x^2 - 7[/tex] and [tex]p(x) = x - 4[/tex], find [tex](k \cdot p)(x)[/tex].

A. [tex](k \cdot p)(x) = 2x^2 - 16x + 32[/tex]
B. [tex](k \cdot p)(x) = 2x^2 - 8x + 16[/tex]
C. [tex](k \cdot p)(x) = 2x^2 - 16x + 25[/tex]
D. [tex](k \cdot p)(x) = 2x^2 - 11[/tex]



Answer :

To solve for [tex]\((k \cdot p)(x)\)[/tex] given the functions [tex]\(k(x) = 2x^2 - 7\)[/tex] and [tex]\(p(x) = x - 4\)[/tex], you need to find the product of these two functions.

First, let's write the expression for [tex]\((k \cdot p)(x)\)[/tex]:
[tex]\[ (k \cdot p)(x) = k(x) \cdot p(x) \][/tex]

Substitute the given functions into the expression:
[tex]\[ (k \cdot p)(x) = (2x^2 - 7) \cdot (x - 4) \][/tex]

Next, expand the product using the distributive property (also known as FOIL method for binomials):

[tex]\[ \begin{align*} (k \cdot p)(x) &= (2x^2 - 7)(x - 4) \\ &= 2x^2 \cdot x + 2x^2 \cdot (-4) + (-7) \cdot x + (-7) \cdot (-4) \\ &= 2x^3 - 8x^2 - 7x + 28 \end{align*} \][/tex]

So, the expanded form of [tex]\((k \cdot p)(x)\)[/tex] is:
[tex]\[ (k \cdot p)(x) = 2x^3 - 8x^2 - 7x + 28 \][/tex]

Notice that none of the provided options match this polynomial exactly. This implies there might be a mistake in the problem options. However, considering the expanded form from our calculations, none of the provided answers are correct. Therefore, the accurate expression for [tex]\((k \cdot p)(x)\)[/tex] based on our step-by-step calculation is:

[tex]\[ (k \cdot p)(x) = 2x^3 - 8x^2 - 7x + 28 \][/tex]