Rewrite the expression as a product of identical factors to find the product for [tex]$100^{\frac{3}{2}}$[/tex]. Submit your answer in simplified form.

[tex]\square[/tex]



Answer :

To solve the expression [tex]\(100^{\frac{3}{2}}\)[/tex], let's rewrite and simplify it in several steps.

1. Start with the given expression:
[tex]\[100^{\frac{3}{2}}\][/tex]

2. Recognize that the base [tex]\(100\)[/tex] can be expressed as [tex]\(10^2\)[/tex]:
[tex]\[(10^2)^{\frac{3}{2}}\][/tex]

3. Apply the power of a power property [tex]\((a^m)^n = a^{mn}\)[/tex]:
[tex]\[10^{2 \cdot \frac{3}{2}}\][/tex]

4. Simplify the exponent [tex]\(2 \cdot \frac{3}{2}\)[/tex]:
[tex]\[10^{3}\][/tex]

5. Calculate the final result:
[tex]\[10^3 = 1000\][/tex]

Therefore, the simplified form of [tex]\(100^{\frac{3}{2}}\)[/tex] is:
[tex]\[\boxed{1000}\][/tex]