If a rock falls from a height of 90 meters above the ground, the height [tex]\( H \)[/tex] (in meters) after [tex]\( x \)[/tex] seconds can be approximated using the formula

[tex]\[ H = 90 - 4.9 x^2 \][/tex]

What is the height of the rock after 3 seconds?



Answer :

To find the height of the rock after 3 seconds, we can use the given formula for height, which is [tex]\( H = 90 - 4.9x^2 \)[/tex].

We need to plug in [tex]\( x = 3 \)[/tex] seconds into the formula and solve for [tex]\( H \)[/tex].

1. Start with the formula:
[tex]\[ H = 90 - 4.9x^2 \][/tex]

2. Substitute [tex]\( x = 3 \)[/tex] into the formula:
[tex]\[ H = 90 - 4.9(3)^2 \][/tex]

3. Calculate [tex]\( 3^2 \)[/tex]:
[tex]\[ 3^2 = 9 \][/tex]

4. Substitute [tex]\( 9 \)[/tex] back into the formula:
[tex]\[ H = 90 - 4.9 \cdot 9 \][/tex]

5. Multiply [tex]\( 4.9 \)[/tex] by [tex]\( 9 \)[/tex]:
[tex]\[ 4.9 \cdot 9 = 44.1 \][/tex]

6. Subtract [tex]\( 44.1 \)[/tex] from [tex]\( 90 \)[/tex]:
[tex]\[ H = 90 - 44.1 = 45.9 \][/tex]

Therefore, the height of the rock after 3 seconds is [tex]\( 45.9 \)[/tex] meters.