Given the functions [tex]k(x) = 2x^2 - 7[/tex] and [tex]p(x) = x - 4[/tex], find [tex](k \cdot p)(x)[/tex].

A. [tex](k \cdot p)(x) = 2x^2 - 16x + 32[/tex]
B. [tex](k \cdot p)(x) = 2x^2 - 8x + 16[/tex]
C. [tex](k \cdot p)(x) = 2x^2 - 16x + 25[/tex]
D. [tex](k \cdot p)(x) = 2x^2 - 11[/tex]



Answer :

To solve the problem of finding [tex]\((k \cdot p)(x)\)[/tex] given the functions [tex]\(k(x) = 2x^2 - 7\)[/tex] and [tex]\(p(x) = x - 4\)[/tex], follow these step-by-step instructions:

1. Write down the given functions:
- [tex]\(k(x) = 2x^2 - 7\)[/tex]
- [tex]\(p(x) = x - 4\)[/tex]

2. Form the product [tex]\((k \cdot p)(x)\)[/tex]:
[tex]\[ (k \cdot p)(x) = k(x) \cdot p(x) \][/tex]
Substitute the given functions for [tex]\(k(x)\)[/tex] and [tex]\(p(x)\)[/tex]:
[tex]\[ (k \cdot p)(x) = (2x^2 - 7)(x - 4) \][/tex]

3. Distribute the terms:
To expand [tex]\((2x^2 - 7)(x - 4)\)[/tex], use the distributive property (also known as the FOIL method):

[tex]\[ (2x^2 - 7)(x - 4) = 2x^2 \cdot x + 2x^2 \cdot (-4) - 7 \cdot x - 7 \cdot (-4) \][/tex]

4. Multiply each term:
- [tex]\(2x^2 \cdot x = 2x^3\)[/tex]
- [tex]\(2x^2 \cdot (-4) = -8x^2\)[/tex]
- [tex]\(-7 \cdot x = -7x\)[/tex]
- [tex]\(-7 \cdot (-4) = 28\)[/tex]

5. Combine all these terms:
Put all the terms together:
[tex]\[ (k \cdot p)(x) = 2x^3 - 8x^2 - 7x + 28 \][/tex]

Therefore, the correct result for [tex]\((k \cdot p)(x)\)[/tex] is [tex]\(2x^3 - 8x^2 - 7x + 28\)[/tex].

Looking at the provided possible answers, none of them are correct, based on the computed expression. Therefore, as none of the provided options matches [tex]\(2x^3 - 8x^2 - 7x + 28\)[/tex], you might want to reconsider the given choices in context. The correct result derived from the given [tex]\(k(x)\)[/tex] and [tex]\(p(x)\)[/tex] is:

[tex]\[ 2x^3 - 8x^2 - 7x + 28 \][/tex]