Calculate the change in the kinetic energy (KE) of the bottle when the mass is increased. Use the formula [tex]KE = \frac{1}{2}mv^2[/tex], where [tex]m[/tex] is the mass and [tex]v[/tex] is the speed (velocity). Assume that the speed of the soda bottle falling from a height of 0.8 m will be [tex]4 \, \text{m/s}[/tex], and use this speed for each calculation.

Record your calculations in Table A of your Student Guide.

- When the mass of the bottle is [tex]0.125 \, \text{kg}[/tex], the KE is [tex]\square \, \text{kg} \cdot \text{m}^2 / \text{s}^2[/tex].
- When the mass of the bottle is [tex]0.250 \, \text{kg}[/tex], the KE is [tex]\square \, \text{kg} \cdot \text{m}^2 / \text{s}^2[/tex].
- When the mass of the bottle is [tex]0.375 \, \text{kg}[/tex], the KE is [tex]\square \, \text{kg} \cdot \text{m}^2 / \text{s}^2[/tex].
- When the mass of the bottle is [tex]0.500 \, \text{kg}[/tex], the KE is [tex]\square \, \text{kg} \cdot \text{m}^2 / \text{s}^2[/tex].



Answer :

To solve this problem, we need to calculate the kinetic energy (KE) for different masses of a bottle using the given velocity (4 m/s) and the formula for kinetic energy:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]

We'll calculate the kinetic energy for four different masses: 0.125 kg, 0.250 kg, 0.375 kg, and 0.500 kg.

### Step-by-Step Calculations:

1. When the mass [tex]\( m \)[/tex] is 0.125 kg:
[tex]\[ KE = \frac{1}{2} \times 0.125 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.125 \times 16 \][/tex]
[tex]\[ KE = 1.0 \, \text{J} \, \left(\text{Joules}\right) \][/tex]

2. When the mass [tex]\( m \)[/tex] is 0.250 kg:
[tex]\[ KE = \frac{1}{2} \times 0.250 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.250 \times 16 \][/tex]
[tex]\[ KE = 2.0 \, \text{J} \][/tex]

3. When the mass [tex]\( m \)[/tex] is 0.375 kg:
[tex]\[ KE = \frac{1}{2} \times 0.375 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.375 \times 16 \][/tex]
[tex]\[ KE = 3.0 \, \text{J} \][/tex]

4. When the mass [tex]\( m \)[/tex] is 0.500 kg:
[tex]\[ KE = \frac{1}{2} \times 0.500 \, \text{kg} \times (4 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.500 \times 16 \][/tex]
[tex]\[ KE = 4.0 \, \text{J} \][/tex]

### Summary in Table A:

| Mass (kg) | Kinetic Energy (J) |
|-----------|---------------------|
| 0.125 | 1.0 |
| 0.250 | 2.0 |
| 0.375 | 3.0 |
| 0.500 | 4.0 |

Thus, the kinetic energies for the given masses are as follows:
- For a mass of 0.125 kg, the KE is 1.0 J.
- For a mass of 0.250 kg, the KE is 2.0 J.
- For a mass of 0.375 kg, the KE is 3.0 J.
- For a mass of 0.500 kg, the KE is 4.0 J.