Which of the following equations is equivalent to [tex]$4[x + 2(3x - 7)] = 22x - 65$[/tex]?

A. [tex]$28x - 7 = 22x - 65$[/tex]
B. [tex][tex]$28x - 56 = 22x - 65$[/tex][/tex]
C. [tex]$10x - 14 = 22x - 65$[/tex]
D. [tex]$16x - 28 = 22x - 65$[/tex]



Answer :

Let's solve the given equation step-by-step to determine which of the following equations is equivalent to [tex]\(4[x + 2(3x - 7)] = 22x - 65\)[/tex].

1. Start with the original equation:
[tex]\[ 4[x + 2(3x - 7)] = 22x - 65 \][/tex]

2. Simplify inside the parentheses:
[tex]\[ 2(3x - 7) = 6x - 14 \][/tex]

3. Substitute this simplification back into the equation:
[tex]\[ 4[x + 6x - 14] = 22x - 65 \][/tex]

4. Combine like terms inside the square brackets:
[tex]\[ x + 6x - 14 = 7x - 14 \][/tex]

5. The equation now becomes:
[tex]\[ 4[7x - 14] = 22x - 65 \][/tex]

6. Distribute the 4:
[tex]\[ 4 \cdot 7x - 4 \cdot 14 = 28x - 56 \][/tex]

7. So, the simplified form of the equation is:
[tex]\[ 28x - 56 = 22x - 65 \][/tex]

Therefore, the equivalent equation to [tex]\(4[x+2(3x-7)]=22x-65\)[/tex] is:

[tex]\[ 28x - 56 = 22x - 65 \][/tex]

So, the correct answer is [tex]\(28x - 56 = 22x - 65\)[/tex].