Answer :
Alright! Let's tackle this problem step-by-step.
### Step-by-Step Solution
#### Given Functions/Machines:
1. [tex]\( f_1(x) = -2x + 34 \)[/tex]
2. [tex]\( f_2(x) = \frac{-x}{3} - 10 \)[/tex]
3. [tex]\( f_3(x) = -|3x| \)[/tex]
4. [tex]\( f_4(x) = (x - 2)^2 \)[/tex]
We need to find the order of applying these functions (machines) to achieve a particular output from a given input.
### Part A
Initial Input = 15, Desired Output = -6
We need to determine the order of the machines such that applying all of them in sequence starting with an input of 15 results in -6.
According to the derived answer, the order is:
1. [tex]\( f_1 \)[/tex]
2. [tex]\( f_4 \)[/tex]
3. [tex]\( f_3 \)[/tex]
4. [tex]\( f_2 \)[/tex]
Let's verify this order step-by-step:
1. Function 1: [tex]\( f_1(x) = -2x + 34 \)[/tex]:
[tex]\[ f_1(15) = -2(15) + 34 = -30 + 34 = 4 \][/tex]
2. Function 4: [tex]\( f_4(x) = (x - 2)^2 \)[/tex]:
[tex]\[ f_4(4) = (4 - 2)^2 = 2^2 = 4 \][/tex]
3. Function 3: [tex]\( f_3(x) = -|3x| \)[/tex]:
[tex]\[ f_3(4) = -|3 \cdot 4| = -|12| = -12 \][/tex]
4. Function 2: [tex]\( f_2(x) = \frac{-x}{3} - 10 \)[/tex]:
[tex]\[ f_2(-12) = \frac{-(-12)}{3} - 10 = \frac{12}{3} - 10 = 4 - 10 = -6 \][/tex]
The final output is -6, which is the desired result.
### Part B
Initial Input = 8, Desired Output = 2
The order of functions derived to achieve this is:
1. [tex]\( f_3 \)[/tex]
2. [tex]\( f_2 \)[/tex]
3. [tex]\( f_4 \)[/tex]
4. [tex]\( f_1 \)[/tex]
Let's verify this order step-by-step:
1. Function 3: [tex]\( f_3(x) = -|3x| \)[/tex]:
[tex]\[ f_3(8) = -|3 \cdot 8| = -|24| = -24 \][/tex]
2. Function 2: [tex]\( f_2(x) = \frac{-x}{3} - 10 \)[/tex]:
[tex]\[ f_2(-24) = \frac{-(-24)}{3} - 10 = \frac{24}{3} - 10 = 8 - 10 = -2 \][/tex]
3. Function 4: [tex]\( f_4(x) = (x - 2)^2 \)[/tex]:
[tex]\[ f_4(-2) = (-2 - 2)^2 = (-4)^2 = 16 \][/tex]
4. Function 1: [tex]\( f_1(x) = -2x + 34 \)[/tex]:
[tex]\[ f_1(16) = -2(16) + 34 = -32 + 34 = 2 \][/tex]
The final output is 2, which is the desired result.
### Summary
- Part A: The order of the machines to convert an input of 15 to an output of -6 is: [tex]\( f_1, f_4, f_3, f_2 \)[/tex].
- Part B: The order of the machines to convert an input of 8 to an output of 2 is: [tex]\( f_3, f_2, f_4, f_1 \)[/tex].
### Step-by-Step Solution
#### Given Functions/Machines:
1. [tex]\( f_1(x) = -2x + 34 \)[/tex]
2. [tex]\( f_2(x) = \frac{-x}{3} - 10 \)[/tex]
3. [tex]\( f_3(x) = -|3x| \)[/tex]
4. [tex]\( f_4(x) = (x - 2)^2 \)[/tex]
We need to find the order of applying these functions (machines) to achieve a particular output from a given input.
### Part A
Initial Input = 15, Desired Output = -6
We need to determine the order of the machines such that applying all of them in sequence starting with an input of 15 results in -6.
According to the derived answer, the order is:
1. [tex]\( f_1 \)[/tex]
2. [tex]\( f_4 \)[/tex]
3. [tex]\( f_3 \)[/tex]
4. [tex]\( f_2 \)[/tex]
Let's verify this order step-by-step:
1. Function 1: [tex]\( f_1(x) = -2x + 34 \)[/tex]:
[tex]\[ f_1(15) = -2(15) + 34 = -30 + 34 = 4 \][/tex]
2. Function 4: [tex]\( f_4(x) = (x - 2)^2 \)[/tex]:
[tex]\[ f_4(4) = (4 - 2)^2 = 2^2 = 4 \][/tex]
3. Function 3: [tex]\( f_3(x) = -|3x| \)[/tex]:
[tex]\[ f_3(4) = -|3 \cdot 4| = -|12| = -12 \][/tex]
4. Function 2: [tex]\( f_2(x) = \frac{-x}{3} - 10 \)[/tex]:
[tex]\[ f_2(-12) = \frac{-(-12)}{3} - 10 = \frac{12}{3} - 10 = 4 - 10 = -6 \][/tex]
The final output is -6, which is the desired result.
### Part B
Initial Input = 8, Desired Output = 2
The order of functions derived to achieve this is:
1. [tex]\( f_3 \)[/tex]
2. [tex]\( f_2 \)[/tex]
3. [tex]\( f_4 \)[/tex]
4. [tex]\( f_1 \)[/tex]
Let's verify this order step-by-step:
1. Function 3: [tex]\( f_3(x) = -|3x| \)[/tex]:
[tex]\[ f_3(8) = -|3 \cdot 8| = -|24| = -24 \][/tex]
2. Function 2: [tex]\( f_2(x) = \frac{-x}{3} - 10 \)[/tex]:
[tex]\[ f_2(-24) = \frac{-(-24)}{3} - 10 = \frac{24}{3} - 10 = 8 - 10 = -2 \][/tex]
3. Function 4: [tex]\( f_4(x) = (x - 2)^2 \)[/tex]:
[tex]\[ f_4(-2) = (-2 - 2)^2 = (-4)^2 = 16 \][/tex]
4. Function 1: [tex]\( f_1(x) = -2x + 34 \)[/tex]:
[tex]\[ f_1(16) = -2(16) + 34 = -32 + 34 = 2 \][/tex]
The final output is 2, which is the desired result.
### Summary
- Part A: The order of the machines to convert an input of 15 to an output of -6 is: [tex]\( f_1, f_4, f_3, f_2 \)[/tex].
- Part B: The order of the machines to convert an input of 8 to an output of 2 is: [tex]\( f_3, f_2, f_4, f_1 \)[/tex].