The graph of [tex]$f(x)=-2x-4$[/tex] is given.

Determine the location of the [tex]$x$[/tex]-intercept.

A. [tex](-2,0)[/tex]

B. [tex](0,-2)[/tex]

C. [tex](0,-4)[/tex]

D. [tex](-4,0)[/tex]



Answer :

To determine the location of the [tex]\( x \)[/tex]-intercept for the function [tex]\( f(x) = -2x - 4 \)[/tex], follow these steps:

1. Identify the point of interest: The [tex]\( x \)[/tex]-intercept is the point where the graph of the function crosses the [tex]\( x \)[/tex]-axis. At this point, the [tex]\( y \)[/tex]-value is zero ([tex]\( y = 0 \)[/tex]).

2. Set up the equation: To find the [tex]\( x \)[/tex]-intercept, set the output [tex]\( f(x) \)[/tex] equal to 0 because at the [tex]\( x \)[/tex]-intercept, the value of [tex]\( y \)[/tex] must be zero.

[tex]\[ 0 = -2x - 4 \][/tex]

3. Solve for [tex]\( x \)[/tex]:

[tex]\[ -2x - 4 = 0 \][/tex]

Add 4 to both sides of the equation:

[tex]\[ -2x = 4 \][/tex]

Now, divide both sides by -2:

[tex]\[ x = \frac{4}{-2} \][/tex]

[tex]\[ x = -2 \][/tex]

4. Write the coordinates: The [tex]\( x \)[/tex]-intercept occurs at the point where [tex]\( x = -2 \)[/tex] and [tex]\( y = 0 \)[/tex].

Therefore, the location of the [tex]\( x \)[/tex]-intercept is [tex]\( (-2, 0) \)[/tex].

Thus, the correct answer is:
[tex]\[ (-2,0) \][/tex]