Answer :

To simplify the expression [tex]\(\frac{b^3 a^6}{b^5 a^4}\)[/tex], let's follow these steps:

1. Separate the bases and exponents:
The given expression can be separated into two parts: one involving [tex]\(b\)[/tex] and the other involving [tex]\(a\)[/tex]:

[tex]\[ \frac{b^3}{b^5} \times \frac{a^6}{a^4} \][/tex]

2. Simplify each part by applying the division rule for exponents:
The division rule for exponents states that when dividing like bases, you subtract the exponents: [tex]\(\frac{x^m}{x^n} = x^{m-n}\)[/tex].

- For the base [tex]\(b\)[/tex]:
[tex]\[ \frac{b^3}{b^5} = b^{3-5} = b^{-2} \][/tex]

- For the base [tex]\(a\)[/tex]:
[tex]\[ \frac{a^6}{a^4} = a^{6-4} = a^2 \][/tex]

3. Combine the simplified parts:

By combining the results from the previous step, we get:
[tex]\[ b^{-2} \times a^2 \][/tex]

So, the simplified expression is:
[tex]\[ b^{-2} a^2 \][/tex]

This means that the final simplified form of [tex]\(\frac{b^3 a^6}{b^5 a^4}\)[/tex] is [tex]\(b^{-2} a^2\)[/tex].