Which formula is used to calculate the standard deviation of sample data?

A. [tex]s = \sqrt{\frac{\left(x_1 - \bar{x}\right)^2 + \left(x_2 - \bar{x}\right)^2 + \ldots + \left(x_n - \bar{x}\right)^2}{n-1}}[/tex]

B. [tex]\sigma^2 = \frac{\left(x_1 - \mu\right)^2 + \left(x_2 - \mu\right)^2 + \cdots + \left(x_N - \mu\right)^2}{N}[/tex]

C. [tex]\sigma = \sqrt{\frac{\left(x_1 - \mu\right)^2 + \left(x_2 - \mu\right)^2 + \ldots + \left(x_N - \mu\right)^2}{N}}[/tex]

D. [tex]S = \frac{\left(x_1 - \bar{x}\right)^2 + \left(x_2 - \bar{x}\right)^2 + \ldots + \left(x_n - \bar{x}\right)^2}{n-1}[/tex]



Answer :

To calculate the standard deviation of sample data, the correct formula is given by:

[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]

Here's the step-by-step explanation:

1. Mean Calculation:
- First, calculate the sample mean ([tex]\(\bar{x}\)[/tex]), which is the average of all sample data points.
- [tex]\(\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}\)[/tex]

2. Deviation from the Mean:
- Compute the deviation of each data point [tex]\(x_i\)[/tex] from the sample mean [tex]\(\bar{x}\)[/tex].
- [tex]\(x_i - \bar{x}\)[/tex] for all [tex]\(i\)[/tex].

3. Square of Deviations:
- Square each of these deviations.
- [tex]\((x_i - \bar{x})^2\)[/tex] for all [tex]\(i\)[/tex].

4. Sum of Squared Deviations:
- Sum up all the squared deviations.
- [tex]\(\sum_{i=1}^{n} (x_i - \bar{x})^2 = (x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2\)[/tex]

5. Divide by [tex]\(n-1\)[/tex]:
- Divide the summed squared deviations by [tex]\(n - 1\)[/tex], where [tex]\(n\)[/tex] is the number of data points. This division by [tex]\(n - 1\)[/tex] instead of [tex]\(n\)[/tex] is known as Bessel's correction, which corrects the bias in the estimation of the population variance and standard deviation from a sample.
- [tex]\(\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}\)[/tex]

6. Square Root:
- Finally, take the square root of the result to obtain the standard deviation.
- [tex]\(s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}}\)[/tex]

Given the presented options, the correct formula for the standard deviation of sample data is:

[tex]\[ s = \sqrt{\frac{(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \ldots + (x_n - \bar{x})^2}{n - 1}} \][/tex]

Thus, the correct choice is the first one in the given options.