Solve for [tex]$u$[/tex].

[tex]\[|2u - 5| = 7\][/tex]

If there is more than one solution, separate them with commas. If there is no solution, click on "No solution".



Answer :

Certainly! Let's solve for [tex]\( u \)[/tex] in the equation [tex]\( |2u - 5| = 7 \)[/tex].

### Step-by-Step Solution:

1. Understand the Absolute Value Equation:
The equation [tex]\( |2u - 5| = 7 \)[/tex] means that the expression inside the absolute value, [tex]\( 2u - 5 \)[/tex], can be either 7 or -7. This is because the absolute value of a number is that number without regard to its sign.

2. Set Up the Two Cases:

Case 1: [tex]\( 2u - 5 = 7 \)[/tex]

Case 2: [tex]\( 2u - 5 = -7 \)[/tex]

3. Solve Case 1 [tex]\( (2u - 5 = 7) \)[/tex]:
[tex]\[ 2u - 5 = 7 \][/tex]
Add 5 to both sides to isolate the term with [tex]\( u \)[/tex]:
[tex]\[ 2u - 5 + 5 = 7 + 5 \][/tex]
[tex]\[ 2u = 12 \][/tex]
Divide both sides by 2:
[tex]\[ u = \frac{12}{2} \][/tex]
[tex]\[ u = 6 \][/tex]

4. Solve Case 2 [tex]\( (2u - 5 = -7) \)[/tex]:
[tex]\[ 2u - 5 = -7 \][/tex]
Add 5 to both sides to isolate the term with [tex]\( u \)[/tex]:
[tex]\[ 2u - 5 + 5 = -7 + 5 \][/tex]
[tex]\[ 2u = -2 \][/tex]
Divide both sides by 2:
[tex]\[ u = \frac{-2}{2} \][/tex]
[tex]\[ u = -1 \][/tex]

### Summary:

The solutions to the equation [tex]\( |2u - 5| = 7 \)[/tex] are:
[tex]\[ u = 6 \quad \text{and} \quad u = -1 \][/tex]

So the solutions are [tex]\( u = 6, -1 \)[/tex].