Select the correct answer.

The coordinates of point [tex]\( J \)[/tex] are [tex]\( (-7,2) \)[/tex], and the midpoint of [tex]\(\overline{J K}\)[/tex] is at [tex]\( L(3,5) \)[/tex]. What are the coordinates of point [tex]\( K \)[/tex]?

A. [tex]\( (13,8) \)[/tex]

B. [tex]\( (-1,12) \)[/tex]

C. [tex]\( (4,-2) \)[/tex]

D. [tex]\( (8,3) \)[/tex]



Answer :

To find the coordinates of point [tex]\( K \)[/tex] given that the midpoint of segment [tex]\( \overline{J K} \)[/tex] is [tex]\( L(3,5) \)[/tex] and the coordinates of point [tex]\( J \)[/tex] are [tex]\((-7,2)\)[/tex], we can use the midpoint formula. The midpoint formula states that the coordinates of the midpoint [tex]\( (x_{\text{mid}}, y_{\text{mid}}) \)[/tex] can be found using the coordinates of the endpoints [tex]\( (x_1, y_1) \)[/tex] and [tex]\( (x_2, y_2) \)[/tex] as follows:

[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

We know point [tex]\( J(-7,2) \)[/tex] and the midpoint [tex]\( L(3,5) \)[/tex]. Plugging these into the midpoint formula gives us:

[tex]\[ \left( \frac{-7 + x_2}{2}, \frac{2 + y_2}{2} \right) = (3, 5) \][/tex]

To solve for [tex]\( x_2 \)[/tex] and [tex]\( y_2 \)[/tex], we set up the following equations from the equality of the coordinates:

[tex]\[ \frac{-7 + x_2}{2} = 3 \][/tex]

[tex]\[ \frac{2 + y_2}{2} = 5 \][/tex]

Now, solve these equations step-by-step. For the [tex]\( x \)[/tex]-coordinate:

[tex]\[ \frac{-7 + x_2}{2} = 3 \][/tex]

Multiply both sides by 2 to eliminate the denominator:

[tex]\[ -7 + x_2 = 6 \][/tex]

Add 7 to both sides to solve for [tex]\( x_2 \)[/tex]:

[tex]\[ x_2 = 13 \][/tex]

Next, for the [tex]\( y \)[/tex]-coordinate:

[tex]\[ \frac{2 + y_2}{2} = 5 \][/tex]

Multiply both sides by 2 to eliminate the denominator:

[tex]\[ 2 + y_2 = 10 \][/tex]

Subtract 2 from both sides to solve for [tex]\( y_2 \)[/tex]:

[tex]\[ y_2 = 8 \][/tex]

Thus, the coordinates of point [tex]\( K \)[/tex] are [tex]\( (13, 8) \)[/tex].

The correct answer is:
A. [tex]\( (13, 8) \)[/tex]