Prepare a materials budget from the following requirement for 100 units of production:

[tex]\[
\begin{tabular}{|l|l|l|l|}
\hline
Material & Rate per Kg (Rs.) & Product X (Kg) & Product Y (Kg) \\
\hline
A & 40 & 20 & 40 \\
B & 30 & 10 & 10 \\
C & 20 & 40 & 30 \\
\hline
\end{tabular}
\][/tex]

Production Units: X - 4000, Y - 1000



Answer :

To prepare the materials budget from the given requirement for 100 units of Production, let's go through the entire process step by step:

### Step 1: Gather Provided Data
1. Rates per Kg:
- Material A: Rs. 40
- Material B: Rs. 30
- Material C: Rs. 20

2. Requirements for 100 Units:
- Material A:
- Product X: 20 Kg
- Proc: 40 Kg
- Material B:
- Product X: 10 Kg
- Proc: 10 Kg
- Material C:
- Product X: 40 Kg
- Proc: 30 Kg

3. Production Units:
- Production of Product X: 4000 units
- Production of Proc (Product Y): 1000 units

### Step 2: Calculate Materials Required for Production X
Since 100 units of Product X require a certain amount of materials, we calculate the total material requirements for 4000 units of Product X by scaling up:

- Material A for Product X:
[tex]\( \frac{20 \, \text{Kg}}{100 \, \text{units}} \times 4000 \, \text{units} = 800 \, \text{Kg} \)[/tex]

- Material B for Product X:
[tex]\( \frac{10 \, \text{Kg}}{100 \, \text{units}} \times 4000 \, \text{units} = 400 \, \text{Kg} \)[/tex]

- Material C for Product X:
[tex]\( \frac{40 \, \text{Kg}}{100 \, \text{units}} \times 4000 \, \text{units} = 1600 \, \text{Kg} \)[/tex]

Thus, the materials required for 4000 units of Production X are:
- A: 800 Kg
- B: 400 Kg
- C: 1600 Kg

### Step 3: Calculate Materials Required for Production Y (Proc)
Similarly, we calculate the total material requirements for 1000 units of Product Y by scaling up:

- Material A for Proc:
[tex]\( \frac{40 \, \text{Kg}}{100 \, \text{units}} \times 1000 \, \text{units} = 400 \, \text{Kg} \)[/tex]

- Material B for Proc:
[tex]\( \frac{10 \, \text{Kg}}{100 \, \text{units}} \times 1000 \, \text{units} = 100 \, \text{Kg} \)[/tex]

- Material C for Proc:
[tex]\( \frac{30 \, \text{Kg}}{100 \, \text{units}} \times 1000 \, \text{units} = 300 \, \text{Kg} \)[/tex]

Thus, the materials required for 1000 units of Production Y are:
- A: 400 Kg
- B: 100 Kg
- C: 300 Kg

### Step 4: Calculate Total Materials Required
Add the material requirements for both Product X and Product Y:

- Total Material A:
[tex]\( 800 \, \text{Kg (Product X)} + 400 \, \text{Kg (Proc)} = 1200 \, \text{Kg} \)[/tex]

- Total Material B:
[tex]\( 400 \, \text{Kg (Product X)} + 100 \, \text{Kg (Proc)} = 500 \, \text{Kg} \)[/tex]

- Total Material C:
[tex]\( 1600 \, \text{Kg (Product X)} + 300 \, \text{Kg (Proc)} = 1900 \, \text{Kg} \)[/tex]

Thus, the total materials required are:
- A: 1200 Kg
- B: 500 Kg
- C: 1900 Kg

### Step 5: Calculate the Budget for Each Material
Now, we calculate the budget for each material using their respective rates:

- Budget for Material A:
[tex]\( 1200 \, \text{Kg} \times Rs. 40/\text{Kg} = Rs. 48000 \)[/tex]

- Budget for Material B:
[tex]\( 500 \, \text{Kg} \times Rs. 30/\text{Kg} = Rs. 15000 \)[/tex]

- Budget for Material C:
[tex]\( 1900 \, \text{Kg} \times Rs. 20/\text{Kg} = Rs. 38000 \)[/tex]

### Step 6: Calculate the Total Budget
Sum up the individual budgets to get the total budget:

- Total Budget:
[tex]\( Rs. 48000 + Rs. 15000 + Rs. 38000 = Rs. 101000 \)[/tex]

### Summary of Results
Thus, the detailed materials budget is:
- Material A: Required = 1200 Kg, Budget = Rs. 48000
- Material B: Required = 500 Kg, Budget = Rs. 15000
- Material C: Required = 1900 Kg, Budget = Rs. 38000
- Total Budget: Rs. 101000