Match each inequality on the left with its correct solution on the right.
Some answer choices on the right will be used more than once.

[tex]\[
\begin{array}{l}
4x + 2 \ \textgreater \ 10 \text{ and } -3x - 1 \ \textgreater \ 5 \\
|3x| + 4 \ \textless \ 10 \\
|x + 2| + 4 \ \textless \ 3 \\
|2x + 4| + 2 \ \textgreater \ 4 \\
\end{array}
\][/tex]

[tex]\[
\begin{array}{l}
-2 \ \textless \ x \ \textless \ 2 \\
x \ \textgreater \ -1 \text{ or } x \ \textless \ -3 \\
\end{array}
\][/tex]

no solution



Answer :

Sure! Let's match each inequality with its correct solution.

1. [tex]\(4x + 2 > 10\)[/tex] and [tex]\(-3x - 1 > 5\)[/tex]

- Solving the first part:
[tex]\[ 4x + 2 > 10 \implies 4x > 8 \implies x > 2 \][/tex]
- Solving the second part:
[tex]\[ -3x - 1 > 5 \implies -3x > 6 \implies x < -2 \][/tex]
- Combining the solutions, we see that [tex]\(x > 2\)[/tex] and [tex]\(x < -2\)[/tex] cannot be simultaneously true.

Therefore, the solution is "no solution".

2. [tex]\(|3x| + 4 < 10\)[/tex]

- Simplifying:
[tex]\[ |3x| < 6 \][/tex]
- This translates to:
[tex]\[ -6 < 3x < 6 \implies -2 < x < 2 \][/tex]

Therefore, the solution is [tex]\(-2 < x < 2\)[/tex].

3. [tex]\(|x+2| + 4 < 3\)[/tex]

- Simplifying:
[tex]\[ |x + 2| < -1 \][/tex]
- Since an absolute value cannot be less than a negative number, this inequality has no solution.

Therefore, the solution is "no solution".

4. [tex]\(|2x+4| + 2 > 4\)[/tex]

- Simplifying:
[tex]\[ |2x + 4| > 2 \][/tex]
- This translates to two separate inequalities:
[tex]\[ 2x + 4 > 2 \implies 2x > -2 \implies x > -1 \][/tex]
[tex]\[ 2x + 4 < -2 \implies 2x < -6 \implies x < -3 \][/tex]
- Therefore, the solution is:

[tex]\(x > -1 \text{ or } x < -3\)[/tex]

In summary, we have:

1. [tex]\(4x + 2 > 10\)[/tex] and [tex]\(-3x - 1 > 5\)[/tex] corresponds to "no solution".
2. [tex]\(|3x| + 4 < 10\)[/tex] corresponds to "-2 < x < 2".
3. [tex]\(|x+2| + 4 < 3\)[/tex] corresponds to "no solution".
4. [tex]\(|2x + 4| + 2 > 4\)[/tex] corresponds to "x > -1 \text{ or } x < -3".