Divide and state the quotient in simplest form.

[tex]\[
\frac{x^2 - 4x - 45}{x + 6} \div \frac{x^2 - 3x - 40}{x + 6}
\][/tex]

A. [tex]\(\frac{9}{8}\)[/tex]

B. [tex]\(\frac{x - 9}{x - 8}\)[/tex]

C. [tex]\(\frac{x - 8}{x - 9}\)[/tex]

D. [tex]\(\frac{x^3 - 4x - 45}{x^2 - 3x - 40}\)[/tex]



Answer :

To divide the given rational expressions and simplify the quotient, follow these steps:

1. Write the division as multiplication:
[tex]\[ \frac{x^2 - 4x - 45}{x+6} \div \frac{x^2 - 3x - 40}{x+6} = \frac{x^2 - 4x - 45}{x+6} \times \frac{x+6}{x^2 - 3x - 40} \][/tex]

2. Simplify the expression:
Notice that multiplying by [tex]\(\frac{x+6}{x+6}\)[/tex] is essentially multiplying by 1, so we can simplify:
[tex]\[ \frac{x^2 - 4x - 45}{x+6} \times \frac{x+6}{x^2 - 3x - 40} = \frac{x^2 - 4x - 45}{x^2 - 3x - 40} \][/tex]

3. Factorize the numerators and denominators:
- Factorize [tex]\(x^2 - 4x - 45\)[/tex]:
[tex]\[ x^2 - 4x - 45 = (x - 9)(x + 5) \][/tex]
- Factorize [tex]\(x^2 - 3x - 40\)[/tex]:
[tex]\[ x^2 - 3x - 40 = (x - 8)(x + 5) \][/tex]

4. Substitute the factored forms back into the expression:
[tex]\[ \frac{(x - 9)(x + 5)}{(x - 8)(x + 5)} \][/tex]

5. Cancel out the common factors:
Since [tex]\( (x + 5) \)[/tex] appears in both the numerator and denominator, we can cancel them out:
[tex]\[ \frac{x - 9}{x - 8} \][/tex]

Therefore, the simplified quotient of the given expression is:
[tex]\[ \boxed{\frac{x - 9}{x - 8}} \][/tex]